Create Demo_OpenCV_Simple_GUI.py
A simple example where different OpenCV functions can be controlled via PySimpleGUI in realtime. Is that going in the right direction?
This commit is contained in:
parent
1ed8a0c3ee
commit
8b04b9598c
|
@ -0,0 +1,76 @@
|
||||||
|
import sys
|
||||||
|
if sys.version_info[0] >= 3:
|
||||||
|
import PySimpleGUI as sg
|
||||||
|
else:
|
||||||
|
import PySimpleGUI27 as sg
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
from sys import exit as exit
|
||||||
|
|
||||||
|
"""
|
||||||
|
Demo program that displays a webcam using OpenCV and applies some very basic image functions
|
||||||
|
|
||||||
|
- functions from top to bottom -
|
||||||
|
none: no processing
|
||||||
|
threshold: simple b/w-threshold on the luma channel, slider sets the threshold value
|
||||||
|
canny: edge finding with canny, sliders set the two threshold values for the function => edge sensitivity
|
||||||
|
contour: colour finding in the frame, first slider sets the hue for the colour to find, second the minimum saturation
|
||||||
|
for the object. Found objects are drawn with a red contour.
|
||||||
|
blur: simple Gaussian blur, slider sets the sigma, i.e. the amount of blur smear
|
||||||
|
hue: moves the image hue values by the amount selected on the slider
|
||||||
|
enhance: applies local contrast enhancement on the luma channel to make the image fancier - slider controls fanciness.
|
||||||
|
"""
|
||||||
|
def main():
|
||||||
|
|
||||||
|
sg.ChangeLookAndFeel('LightGreen')
|
||||||
|
|
||||||
|
# define the window layout
|
||||||
|
layout = [[sg.Text('OpenCV Demo', size=(40, 1), justification='center')],
|
||||||
|
[sg.Image(filename='', key='image')],
|
||||||
|
[sg.Radio('None', 'Radio', True, size=(10, 1))],
|
||||||
|
[sg.Radio('threshold', 'Radio', size=(10, 1),key='thresh'),sg.Slider((0,255),128,1,orientation='h', size=(40, 15),key='thresh_slider')],
|
||||||
|
[sg.Radio('canny', 'Radio', size=(10, 1), key='canny'),sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='canny_slider_a'),sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='canny_slider_b')],
|
||||||
|
[sg.Radio('contour', 'Radio', size=(10, 1), key='contour'),sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='contour_slider'),sg.Slider((0, 255), 80, 1, orientation='h', size=(20, 15), key='base_slider')],
|
||||||
|
[sg.Radio('blur', 'Radio', size=(10, 1),key='blur'),sg.Slider((1,11),1,1,orientation='h', size=(40, 15),key='blur_slider')],
|
||||||
|
[sg.Radio('hue', 'Radio', size=(10, 1), key='hue'),sg.Slider((0, 225), 0, 1, orientation='h', size=(40, 15), key='hue_slider')],
|
||||||
|
[sg.Radio('enhance', 'Radio', size=(10, 1),key='enhance'),sg.Slider((1,255),128,1,orientation='h', size=(40, 15),key='enhance_slider')],
|
||||||
|
[sg.ReadButton('Exit', size=(10, 1))]]
|
||||||
|
|
||||||
|
# create the window and show it without the plot
|
||||||
|
window = sg.Window('Demo Application - OpenCV Integration',
|
||||||
|
location=(800,400))
|
||||||
|
window.Layout(layout).Finalize()
|
||||||
|
|
||||||
|
cap = cv2.VideoCapture(0)
|
||||||
|
while True:
|
||||||
|
event, values = window.ReadNonBlocking()
|
||||||
|
if event == 'Exit' or values is None:
|
||||||
|
sys.exit(0)
|
||||||
|
ret, frame = cap.read()
|
||||||
|
if values['thresh']:
|
||||||
|
frame=cv2.cvtColor(frame,cv2.COLOR_BGR2LAB)[:,:,0]
|
||||||
|
_,frame=cv2.threshold(frame,values['thresh_slider'],255,cv2.THRESH_BINARY)
|
||||||
|
if values['canny']:
|
||||||
|
frame=cv2.Canny(frame,values['canny_slider_a'],values['canny_slider_b'])
|
||||||
|
if values['blur']:
|
||||||
|
frame=cv2.GaussianBlur(frame,(21,21),values['blur_slider'])
|
||||||
|
if values['hue']:
|
||||||
|
frame=cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)
|
||||||
|
frame[:,:,0]+=values['hue_slider']
|
||||||
|
frame=cv2.cvtColor(frame,cv2.COLOR_HSV2BGR)
|
||||||
|
if values['enhance']:
|
||||||
|
enh_val=values['enhance_slider']/40
|
||||||
|
clahe=cv2.createCLAHE(clipLimit=enh_val, tileGridSize=(8,8))
|
||||||
|
lab=cv2.cvtColor(frame,cv2.COLOR_BGR2LAB)
|
||||||
|
lab[:,:,0]=clahe.apply(lab[:,:,0])
|
||||||
|
frame=cv2.cvtColor(lab,cv2.COLOR_LAB2BGR)
|
||||||
|
if values['contour']:
|
||||||
|
hue=cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)
|
||||||
|
hue=cv2.GaussianBlur(hue,(21,21),1)
|
||||||
|
hue=cv2.inRange(hue,np.array([values['contour_slider'],values['base_slider'],40]),np.array([values['contour_slider']+30,255,220]))
|
||||||
|
_,cnts,_=cv2.findContours(hue,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
|
||||||
|
cv2.drawContours(frame,cnts,-1,(0,0,255),2)
|
||||||
|
imgbytes=cv2.imencode('.png', frame)[1].tobytes() #ditto
|
||||||
|
window.FindElement('image').Update(data=imgbytes)
|
||||||
|
|
||||||
|
main()
|
Loading…
Reference in New Issue