From 8b04b9598cd44c03a1341acbb1f431300174690c Mon Sep 17 00:00:00 2001 From: jackyOO7 <44204857+jackyOO7@users.noreply.github.com> Date: Mon, 22 Oct 2018 11:13:54 +0200 Subject: [PATCH] Create Demo_OpenCV_Simple_GUI.py A simple example where different OpenCV functions can be controlled via PySimpleGUI in realtime. Is that going in the right direction? --- Demo_OpenCV_Simple_GUI.py | 76 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 76 insertions(+) create mode 100644 Demo_OpenCV_Simple_GUI.py diff --git a/Demo_OpenCV_Simple_GUI.py b/Demo_OpenCV_Simple_GUI.py new file mode 100644 index 00000000..ff051d32 --- /dev/null +++ b/Demo_OpenCV_Simple_GUI.py @@ -0,0 +1,76 @@ +import sys +if sys.version_info[0] >= 3: + import PySimpleGUI as sg +else: + import PySimpleGUI27 as sg +import cv2 +import numpy as np +from sys import exit as exit + +""" +Demo program that displays a webcam using OpenCV and applies some very basic image functions + +- functions from top to bottom - +none: no processing +threshold: simple b/w-threshold on the luma channel, slider sets the threshold value +canny: edge finding with canny, sliders set the two threshold values for the function => edge sensitivity +contour: colour finding in the frame, first slider sets the hue for the colour to find, second the minimum saturation + for the object. Found objects are drawn with a red contour. +blur: simple Gaussian blur, slider sets the sigma, i.e. the amount of blur smear +hue: moves the image hue values by the amount selected on the slider +enhance: applies local contrast enhancement on the luma channel to make the image fancier - slider controls fanciness. +""" +def main(): + + sg.ChangeLookAndFeel('LightGreen') + + # define the window layout + layout = [[sg.Text('OpenCV Demo', size=(40, 1), justification='center')], + [sg.Image(filename='', key='image')], + [sg.Radio('None', 'Radio', True, size=(10, 1))], + [sg.Radio('threshold', 'Radio', size=(10, 1),key='thresh'),sg.Slider((0,255),128,1,orientation='h', size=(40, 15),key='thresh_slider')], + [sg.Radio('canny', 'Radio', size=(10, 1), key='canny'),sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='canny_slider_a'),sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='canny_slider_b')], + [sg.Radio('contour', 'Radio', size=(10, 1), key='contour'),sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='contour_slider'),sg.Slider((0, 255), 80, 1, orientation='h', size=(20, 15), key='base_slider')], + [sg.Radio('blur', 'Radio', size=(10, 1),key='blur'),sg.Slider((1,11),1,1,orientation='h', size=(40, 15),key='blur_slider')], + [sg.Radio('hue', 'Radio', size=(10, 1), key='hue'),sg.Slider((0, 225), 0, 1, orientation='h', size=(40, 15), key='hue_slider')], + [sg.Radio('enhance', 'Radio', size=(10, 1),key='enhance'),sg.Slider((1,255),128,1,orientation='h', size=(40, 15),key='enhance_slider')], + [sg.ReadButton('Exit', size=(10, 1))]] + + # create the window and show it without the plot + window = sg.Window('Demo Application - OpenCV Integration', + location=(800,400)) + window.Layout(layout).Finalize() + + cap = cv2.VideoCapture(0) + while True: + event, values = window.ReadNonBlocking() + if event == 'Exit' or values is None: + sys.exit(0) + ret, frame = cap.read() + if values['thresh']: + frame=cv2.cvtColor(frame,cv2.COLOR_BGR2LAB)[:,:,0] + _,frame=cv2.threshold(frame,values['thresh_slider'],255,cv2.THRESH_BINARY) + if values['canny']: + frame=cv2.Canny(frame,values['canny_slider_a'],values['canny_slider_b']) + if values['blur']: + frame=cv2.GaussianBlur(frame,(21,21),values['blur_slider']) + if values['hue']: + frame=cv2.cvtColor(frame,cv2.COLOR_BGR2HSV) + frame[:,:,0]+=values['hue_slider'] + frame=cv2.cvtColor(frame,cv2.COLOR_HSV2BGR) + if values['enhance']: + enh_val=values['enhance_slider']/40 + clahe=cv2.createCLAHE(clipLimit=enh_val, tileGridSize=(8,8)) + lab=cv2.cvtColor(frame,cv2.COLOR_BGR2LAB) + lab[:,:,0]=clahe.apply(lab[:,:,0]) + frame=cv2.cvtColor(lab,cv2.COLOR_LAB2BGR) + if values['contour']: + hue=cv2.cvtColor(frame,cv2.COLOR_BGR2HSV) + hue=cv2.GaussianBlur(hue,(21,21),1) + hue=cv2.inRange(hue,np.array([values['contour_slider'],values['base_slider'],40]),np.array([values['contour_slider']+30,255,220])) + _,cnts,_=cv2.findContours(hue,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) + cv2.drawContours(frame,cnts,-1,(0,0,255),2) + imgbytes=cv2.imencode('.png', frame)[1].tobytes() #ditto + window.FindElement('image').Update(data=imgbytes) + +main()