2018-10-22 09:13:54 +00:00
|
|
|
import sys
|
2018-10-29 00:01:03 +00:00
|
|
|
|
2018-10-22 09:13:54 +00:00
|
|
|
if sys.version_info[0] >= 3:
|
2018-10-29 00:01:03 +00:00
|
|
|
import PySimpleGUI as sg
|
2018-10-22 09:13:54 +00:00
|
|
|
else:
|
2018-10-29 00:01:03 +00:00
|
|
|
import PySimpleGUI27 as sg
|
2018-10-22 09:13:54 +00:00
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
from sys import exit as exit
|
|
|
|
|
|
|
|
"""
|
|
|
|
Demo program that displays a webcam using OpenCV and applies some very basic image functions
|
|
|
|
|
|
|
|
- functions from top to bottom -
|
|
|
|
none: no processing
|
|
|
|
threshold: simple b/w-threshold on the luma channel, slider sets the threshold value
|
|
|
|
canny: edge finding with canny, sliders set the two threshold values for the function => edge sensitivity
|
|
|
|
contour: colour finding in the frame, first slider sets the hue for the colour to find, second the minimum saturation
|
|
|
|
for the object. Found objects are drawn with a red contour.
|
|
|
|
blur: simple Gaussian blur, slider sets the sigma, i.e. the amount of blur smear
|
|
|
|
hue: moves the image hue values by the amount selected on the slider
|
|
|
|
enhance: applies local contrast enhancement on the luma channel to make the image fancier - slider controls fanciness.
|
|
|
|
"""
|
2018-10-29 00:01:03 +00:00
|
|
|
|
|
|
|
|
2018-10-22 09:13:54 +00:00
|
|
|
def main():
|
2018-10-29 00:01:03 +00:00
|
|
|
sg.ChangeLookAndFeel('LightGreen')
|
2018-10-22 09:13:54 +00:00
|
|
|
|
2018-10-29 00:01:03 +00:00
|
|
|
# define the window layout
|
|
|
|
layout = [[sg.Text('OpenCV Demo', size=(40, 1), justification='center')],
|
|
|
|
[sg.Image(filename='', key='image')],
|
|
|
|
[sg.Radio('None', 'Radio', True, size=(10, 1))],
|
|
|
|
[sg.Radio('threshold', 'Radio', size=(10, 1), key='thresh'),
|
|
|
|
sg.Slider((0, 255), 128, 1, orientation='h', size=(40, 15), key='thresh_slider')],
|
|
|
|
[sg.Radio('canny', 'Radio', size=(10, 1), key='canny'),
|
|
|
|
sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='canny_slider_a'),
|
|
|
|
sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='canny_slider_b')],
|
|
|
|
[sg.Radio('contour', 'Radio', size=(10, 1), key='contour'),
|
|
|
|
sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='contour_slider'),
|
|
|
|
sg.Slider((0, 255), 80, 1, orientation='h', size=(20, 15), key='base_slider')],
|
|
|
|
[sg.Radio('blur', 'Radio', size=(10, 1), key='blur'),
|
|
|
|
sg.Slider((1, 11), 1, 1, orientation='h', size=(40, 15), key='blur_slider')],
|
|
|
|
[sg.Radio('hue', 'Radio', size=(10, 1), key='hue'),
|
|
|
|
sg.Slider((0, 225), 0, 1, orientation='h', size=(40, 15), key='hue_slider')],
|
|
|
|
[sg.Radio('enhance', 'Radio', size=(10, 1), key='enhance'),
|
|
|
|
sg.Slider((1, 255), 128, 1, orientation='h', size=(40, 15), key='enhance_slider')],
|
|
|
|
[sg.Button('Exit', size=(10, 1))]]
|
2018-10-22 09:13:54 +00:00
|
|
|
|
2018-10-29 00:01:03 +00:00
|
|
|
# create the window and show it without the plot
|
|
|
|
window = sg.Window('Demo Application - OpenCV Integration',
|
|
|
|
location=(800, 400))
|
|
|
|
window.Layout(layout).Finalize()
|
2018-10-22 09:13:54 +00:00
|
|
|
|
2018-10-29 00:01:03 +00:00
|
|
|
cap = cv2.VideoCapture(0)
|
|
|
|
while True:
|
|
|
|
event, values = window.Read(timeout=0, timeout_key='timeout')
|
|
|
|
if event == 'Exit' or event is None:
|
|
|
|
sys.exit(0)
|
|
|
|
ret, frame = cap.read()
|
|
|
|
if values['thresh']:
|
|
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2LAB)[:, :, 0]
|
|
|
|
_, frame = cv2.threshold(frame, values['thresh_slider'], 255, cv2.THRESH_BINARY)
|
|
|
|
if values['canny']:
|
|
|
|
frame = cv2.Canny(frame, values['canny_slider_a'], values['canny_slider_b'])
|
|
|
|
if values['blur']:
|
|
|
|
frame = cv2.GaussianBlur(frame, (21, 21), values['blur_slider'])
|
|
|
|
if values['hue']:
|
|
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
|
|
|
frame[:, :, 0] += values['hue_slider']
|
|
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_HSV2BGR)
|
|
|
|
if values['enhance']:
|
|
|
|
enh_val = values['enhance_slider'] / 40
|
|
|
|
clahe = cv2.createCLAHE(clipLimit=enh_val, tileGridSize=(8, 8))
|
|
|
|
lab = cv2.cvtColor(frame, cv2.COLOR_BGR2LAB)
|
|
|
|
lab[:, :, 0] = clahe.apply(lab[:, :, 0])
|
|
|
|
frame = cv2.cvtColor(lab, cv2.COLOR_LAB2BGR)
|
|
|
|
if values['contour']:
|
|
|
|
hue = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
|
|
|
hue = cv2.GaussianBlur(hue, (21, 21), 1)
|
|
|
|
hue = cv2.inRange(hue, np.array([values['contour_slider'], values['base_slider'], 40]),
|
|
|
|
np.array([values['contour_slider'] + 30, 255, 220]))
|
|
|
|
_, cnts, _ = cv2.findContours(hue, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
cv2.drawContours(frame, cnts, -1, (0, 0, 255), 2)
|
|
|
|
imgbytes = cv2.imencode('.png', frame)[1].tobytes() # ditto
|
|
|
|
window.FindElement('image').Update(data=imgbytes)
|
2018-10-22 09:13:54 +00:00
|
|
|
|
|
|
|
|
|
|
|
main()
|