2018-11-19 18:57:41 +00:00
|
|
|
# USAGE
|
|
|
|
# python yolo.py --image images/baggage_claim.jpg --yolo yolo-coco
|
|
|
|
"""
|
2018-12-03 17:00:45 +00:00
|
|
|
A Yolo image processor with a GUI front-end
|
|
|
|
The original code was command line driven. Now these parameters are collected via a GUI
|
|
|
|
|
|
|
|
old usage: yolo_video.py [-h] -i INPUT -o OUTPUT -y YOLO [-c CONFIDENCE]
|
2018-11-19 18:57:41 +00:00
|
|
|
[-t THRESHOLD]
|
|
|
|
"""
|
|
|
|
|
|
|
|
# import the necessary packages
|
|
|
|
import numpy as np
|
|
|
|
import argparse
|
|
|
|
import time
|
|
|
|
import cv2
|
|
|
|
import os
|
2018-12-03 17:00:45 +00:00
|
|
|
import PySimpleGUIQt as sg
|
2018-11-19 18:57:41 +00:00
|
|
|
|
|
|
|
layout = [
|
|
|
|
[sg.Text('YOLO')],
|
2018-12-03 17:00:45 +00:00
|
|
|
[sg.Text('Path to image'), sg.In(r'C:/Python/PycharmProjects/YoloObjectDetection/images/baggage_claim.jpg',size=(40,1), key='image'), sg.FileBrowse()],
|
|
|
|
[sg.Text('Yolo base path'), sg.In(r'yolo-coco',size=(40,1), key='yolo'), sg.FolderBrowse()],
|
|
|
|
[sg.Text('Confidence'), sg.Slider(range=(0,10),orientation='h', resolution=1, default_value=5, size=(15,15), key='confidence')],
|
|
|
|
[sg.Text('Threshold'), sg.Slider(range=(0,10), orientation='h', resolution=1, default_value=3, size=(15,15), key='threshold')],
|
|
|
|
[sg.OK(), sg.Cancel(), sg.Stretch()]
|
2018-11-19 18:57:41 +00:00
|
|
|
]
|
|
|
|
|
|
|
|
win = sg.Window('YOLO',
|
|
|
|
default_element_size=(14,1),
|
|
|
|
text_justification='right',
|
|
|
|
auto_size_text=False).Layout(layout)
|
|
|
|
event, values = win.Read()
|
|
|
|
args = values
|
|
|
|
win.Close()
|
|
|
|
# construct the argument parse and parse the arguments
|
|
|
|
# ap = argparse.ArgumentParser()
|
|
|
|
# ap.add_argument("-i", "--image", required=True,
|
|
|
|
# help="path to input image")
|
|
|
|
# ap.add_argument("-y", "--yolo", required=True,
|
|
|
|
# help="base path to YOLO directory")
|
|
|
|
# ap.add_argument("-c", "--confidence", type=float, default=0.5,
|
|
|
|
# help="minimum probability to filter weak detections")
|
|
|
|
# ap.add_argument("-t", "--threshold", type=float, default=0.3,
|
|
|
|
# help="threshold when applyong non-maxima suppression")
|
|
|
|
# args = vars(ap.parse_args())
|
|
|
|
|
|
|
|
# load the COCO class labels our YOLO model was trained on
|
2018-12-03 17:00:45 +00:00
|
|
|
args['threshold'] = float(args['threshold']/10)
|
|
|
|
args['confidence'] = float(args['confidence']/10)
|
2018-11-19 18:57:41 +00:00
|
|
|
|
|
|
|
labelsPath = os.path.sep.join([args["yolo"], "coco.names"])
|
|
|
|
LABELS = open(labelsPath).read().strip().split("\n")
|
|
|
|
|
|
|
|
# initialize a list of colors to represent each possible class label
|
|
|
|
np.random.seed(42)
|
|
|
|
COLORS = np.random.randint(0, 255, size=(len(LABELS), 3),
|
|
|
|
dtype="uint8")
|
|
|
|
|
|
|
|
# derive the paths to the YOLO weights and model configuration
|
|
|
|
weightsPath = os.path.sep.join([args["yolo"], "yolov3.weights"])
|
|
|
|
configPath = os.path.sep.join([args["yolo"], "yolov3.cfg"])
|
|
|
|
|
|
|
|
# load our YOLO object detector trained on COCO dataset (80 classes)
|
|
|
|
print("[INFO] loading YOLO from disk...")
|
|
|
|
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
|
|
|
|
|
|
|
|
# load our input image and grab its spatial dimensions
|
|
|
|
image = cv2.imread(args["image"])
|
2018-12-03 17:00:45 +00:00
|
|
|
|
2018-11-19 18:57:41 +00:00
|
|
|
(H, W) = image.shape[:2]
|
|
|
|
|
|
|
|
# determine only the *output* layer names that we need from YOLO
|
|
|
|
ln = net.getLayerNames()
|
|
|
|
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
|
|
|
|
|
|
|
|
# construct a blob from the input image and then perform a forward
|
|
|
|
# pass of the YOLO object detector, giving us our bounding boxes and
|
|
|
|
# associated probabilities
|
|
|
|
blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416),
|
|
|
|
swapRB=True, crop=False)
|
|
|
|
net.setInput(blob)
|
|
|
|
start = time.time()
|
|
|
|
layerOutputs = net.forward(ln)
|
|
|
|
end = time.time()
|
|
|
|
|
|
|
|
# show timing information on YOLO
|
|
|
|
print("[INFO] YOLO took {:.6f} seconds".format(end - start))
|
|
|
|
|
|
|
|
# initialize our lists of detected bounding boxes, confidences, and
|
|
|
|
# class IDs, respectively
|
|
|
|
boxes = []
|
|
|
|
confidences = []
|
|
|
|
classIDs = []
|
|
|
|
|
|
|
|
# loop over each of the layer outputs
|
|
|
|
for output in layerOutputs:
|
|
|
|
# loop over each of the detections
|
|
|
|
for detection in output:
|
|
|
|
# extract the class ID and confidence (i.e., probability) of
|
|
|
|
# the current object detection
|
|
|
|
scores = detection[5:]
|
|
|
|
classID = np.argmax(scores)
|
|
|
|
confidence = scores[classID]
|
|
|
|
|
|
|
|
# filter out weak predictions by ensuring the detected
|
|
|
|
# probability is greater than the minimum probability
|
|
|
|
if confidence > args["confidence"]:
|
|
|
|
# scale the bounding box coordinates back relative to the
|
|
|
|
# size of the image, keeping in mind that YOLO actually
|
|
|
|
# returns the center (x, y)-coordinates of the bounding
|
|
|
|
# box followed by the boxes' width and height
|
|
|
|
box = detection[0:4] * np.array([W, H, W, H])
|
|
|
|
(centerX, centerY, width, height) = box.astype("int")
|
|
|
|
|
|
|
|
# use the center (x, y)-coordinates to derive the top and
|
|
|
|
# and left corner of the bounding box
|
|
|
|
x = int(centerX - (width / 2))
|
|
|
|
y = int(centerY - (height / 2))
|
|
|
|
|
|
|
|
# update our list of bounding box coordinates, confidences,
|
|
|
|
# and class IDs
|
|
|
|
boxes.append([x, y, int(width), int(height)])
|
|
|
|
confidences.append(float(confidence))
|
|
|
|
classIDs.append(classID)
|
|
|
|
|
|
|
|
# apply non-maxima suppression to suppress weak, overlapping bounding
|
|
|
|
# boxes
|
|
|
|
idxs = cv2.dnn.NMSBoxes(boxes, confidences, args["confidence"],
|
|
|
|
args["threshold"])
|
|
|
|
|
|
|
|
# ensure at least one detection exists
|
|
|
|
if len(idxs) > 0:
|
|
|
|
# loop over the indexes we are keeping
|
|
|
|
for i in idxs.flatten():
|
|
|
|
# extract the bounding box coordinates
|
|
|
|
(x, y) = (boxes[i][0], boxes[i][1])
|
|
|
|
(w, h) = (boxes[i][2], boxes[i][3])
|
|
|
|
|
|
|
|
# draw a bounding box rectangle and label on the image
|
|
|
|
color = [int(c) for c in COLORS[classIDs[i]]]
|
|
|
|
cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)
|
|
|
|
text = "{}: {:.4f}".format(LABELS[classIDs[i]], confidences[i])
|
|
|
|
cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX,
|
|
|
|
0.5, color, 2)
|
|
|
|
|
|
|
|
# show the output image
|
2018-12-03 17:00:45 +00:00
|
|
|
imgbytes = cv2.imencode('.png', image)[1].tobytes() # ditto
|
2018-11-19 18:57:41 +00:00
|
|
|
|
|
|
|
|
|
|
|
layout = [
|
|
|
|
[sg.Text('Yolo Output')],
|
|
|
|
[sg.Image(data=imgbytes)],
|
|
|
|
[sg.OK(), sg.Cancel()]
|
|
|
|
]
|
|
|
|
|
|
|
|
win = sg.Window('YOLO',
|
|
|
|
default_element_size=(14,1),
|
|
|
|
text_justification='right',
|
|
|
|
auto_size_text=False).Layout(layout)
|
|
|
|
event, values = win.Read()
|
|
|
|
win.Close()
|
|
|
|
|
|
|
|
# cv2.imshow("Image", image)
|
|
|
|
cv2.waitKey(0)
|