# USAGE # python yolo.py --image images/baggage_claim.jpg --yolo yolo-coco """ A Yolo image processor with a GUI front-end The original code was command line driven. Now these parameters are collected via a GUI old usage: yolo_video.py [-h] -i INPUT -o OUTPUT -y YOLO [-c CONFIDENCE] [-t THRESHOLD] """ # import the necessary packages import numpy as np import argparse import time import cv2 import os import PySimpleGUIQt as sg layout = [ [sg.Text('YOLO')], [sg.Text('Path to image'), sg.In(r'C:/Python/PycharmProjects/YoloObjectDetection/images/baggage_claim.jpg',size=(40,1), key='image'), sg.FileBrowse()], [sg.Text('Yolo base path'), sg.In(r'yolo-coco',size=(40,1), key='yolo'), sg.FolderBrowse()], [sg.Text('Confidence'), sg.Slider(range=(0,10),orientation='h', resolution=1, default_value=5, size=(15,15), key='confidence')], [sg.Text('Threshold'), sg.Slider(range=(0,10), orientation='h', resolution=1, default_value=3, size=(15,15), key='threshold')], [sg.OK(), sg.Cancel(), sg.Stretch()] ] win = sg.Window('YOLO', default_element_size=(14,1), text_justification='right', auto_size_text=False).Layout(layout) event, values = win.Read() args = values win.Close() # construct the argument parse and parse the arguments # ap = argparse.ArgumentParser() # ap.add_argument("-i", "--image", required=True, # help="path to input image") # ap.add_argument("-y", "--yolo", required=True, # help="base path to YOLO directory") # ap.add_argument("-c", "--confidence", type=float, default=0.5, # help="minimum probability to filter weak detections") # ap.add_argument("-t", "--threshold", type=float, default=0.3, # help="threshold when applyong non-maxima suppression") # args = vars(ap.parse_args()) # load the COCO class labels our YOLO model was trained on args['threshold'] = float(args['threshold']/10) args['confidence'] = float(args['confidence']/10) labelsPath = os.path.sep.join([args["yolo"], "coco.names"]) LABELS = open(labelsPath).read().strip().split("\n") # initialize a list of colors to represent each possible class label np.random.seed(42) COLORS = np.random.randint(0, 255, size=(len(LABELS), 3), dtype="uint8") # derive the paths to the YOLO weights and model configuration weightsPath = os.path.sep.join([args["yolo"], "yolov3.weights"]) configPath = os.path.sep.join([args["yolo"], "yolov3.cfg"]) # load our YOLO object detector trained on COCO dataset (80 classes) print("[INFO] loading YOLO from disk...") net = cv2.dnn.readNetFromDarknet(configPath, weightsPath) # load our input image and grab its spatial dimensions image = cv2.imread(args["image"]) (H, W) = image.shape[:2] # determine only the *output* layer names that we need from YOLO ln = net.getLayerNames() ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()] # construct a blob from the input image and then perform a forward # pass of the YOLO object detector, giving us our bounding boxes and # associated probabilities blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416), swapRB=True, crop=False) net.setInput(blob) start = time.time() layerOutputs = net.forward(ln) end = time.time() # show timing information on YOLO print("[INFO] YOLO took {:.6f} seconds".format(end - start)) # initialize our lists of detected bounding boxes, confidences, and # class IDs, respectively boxes = [] confidences = [] classIDs = [] # loop over each of the layer outputs for output in layerOutputs: # loop over each of the detections for detection in output: # extract the class ID and confidence (i.e., probability) of # the current object detection scores = detection[5:] classID = np.argmax(scores) confidence = scores[classID] # filter out weak predictions by ensuring the detected # probability is greater than the minimum probability if confidence > args["confidence"]: # scale the bounding box coordinates back relative to the # size of the image, keeping in mind that YOLO actually # returns the center (x, y)-coordinates of the bounding # box followed by the boxes' width and height box = detection[0:4] * np.array([W, H, W, H]) (centerX, centerY, width, height) = box.astype("int") # use the center (x, y)-coordinates to derive the top and # and left corner of the bounding box x = int(centerX - (width / 2)) y = int(centerY - (height / 2)) # update our list of bounding box coordinates, confidences, # and class IDs boxes.append([x, y, int(width), int(height)]) confidences.append(float(confidence)) classIDs.append(classID) # apply non-maxima suppression to suppress weak, overlapping bounding # boxes idxs = cv2.dnn.NMSBoxes(boxes, confidences, args["confidence"], args["threshold"]) # ensure at least one detection exists if len(idxs) > 0: # loop over the indexes we are keeping for i in idxs.flatten(): # extract the bounding box coordinates (x, y) = (boxes[i][0], boxes[i][1]) (w, h) = (boxes[i][2], boxes[i][3]) # draw a bounding box rectangle and label on the image color = [int(c) for c in COLORS[classIDs[i]]] cv2.rectangle(image, (x, y), (x + w, y + h), color, 2) text = "{}: {:.4f}".format(LABELS[classIDs[i]], confidences[i]) cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) # show the output image imgbytes = cv2.imencode('.png', image)[1].tobytes() # ditto layout = [ [sg.Text('Yolo Output')], [sg.Image(data=imgbytes)], [sg.OK(), sg.Cancel()] ] win = sg.Window('YOLO', default_element_size=(14,1), text_justification='right', auto_size_text=False).Layout(layout) event, values = win.Read() win.Close() # cv2.imshow("Image", image) cv2.waitKey(0)