216 lines
7.0 KiB
Python
216 lines
7.0 KiB
Python
|
# YOLO object detection using a webcam
|
||
|
# Exact same demo as the read from disk, but instead of disk a webcam is used.
|
||
|
# import the necessary packages
|
||
|
import numpy as np
|
||
|
# import argparse
|
||
|
import imutils
|
||
|
import time
|
||
|
import cv2
|
||
|
import os
|
||
|
import PySimpleGUI as sg
|
||
|
|
||
|
i_vid = r'videos/car_chase_01.mp4'
|
||
|
o_vid = r'output/car_chase_01_out.mp4'
|
||
|
y_path = r'yolo-coco'
|
||
|
sg.ChangeLookAndFeel('LightGreen')
|
||
|
layout = [
|
||
|
[sg.Text('YOLO Video Player', size=(18,1), font=('Any',18),text_color='#1c86ee' ,justification='left')],
|
||
|
[sg.Text('Path to input video'), sg.In(i_vid,size=(40,1), key='input'), sg.FileBrowse()],
|
||
|
[sg.Text('Optional Path to output video'), sg.In(o_vid,size=(40,1), key='output'), sg.FileSaveAs()],
|
||
|
[sg.Text('Yolo base path'), sg.In(y_path,size=(40,1), key='yolo'), sg.FolderBrowse()],
|
||
|
[sg.Text('Confidence'), sg.Slider(range=(0,1),orientation='h', resolution=.1, default_value=.5, size=(15,15), key='confidence')],
|
||
|
[sg.Text('Threshold'), sg.Slider(range=(0,1), orientation='h', resolution=.1, default_value=.3, size=(15,15), key='threshold')],
|
||
|
[sg.Text(' '*8), sg.Checkbox('Use webcam', key='_WEBCAM_')],
|
||
|
[sg.Text(' '*8), sg.Checkbox('Write to disk', key='_DISK_')],
|
||
|
[sg.OK(), sg.Cancel()]
|
||
|
]
|
||
|
|
||
|
win = sg.Window('YOLO Video',
|
||
|
default_element_size=(21,1),
|
||
|
text_justification='right',
|
||
|
auto_size_text=False).Layout(layout)
|
||
|
event, values = win.Read()
|
||
|
if event is None or event =='Cancel':
|
||
|
exit()
|
||
|
write_to_disk = values['_DISK_']
|
||
|
use_webcam = values['_WEBCAM_']
|
||
|
args = values
|
||
|
|
||
|
win.Close()
|
||
|
|
||
|
|
||
|
# imgbytes = cv2.imencode('.png', image)[1].tobytes() # ditto
|
||
|
|
||
|
# load the COCO class labels our YOLO model was trained on
|
||
|
labelsPath = os.path.sep.join([args["yolo"], "coco.names"])
|
||
|
LABELS = open(labelsPath).read().strip().split("\n")
|
||
|
|
||
|
# initialize a list of colors to represent each possible class label
|
||
|
np.random.seed(42)
|
||
|
COLORS = np.random.randint(0, 255, size=(len(LABELS), 3),
|
||
|
dtype="uint8")
|
||
|
|
||
|
# derive the paths to the YOLO weights and model configuration
|
||
|
weightsPath = os.path.sep.join([args["yolo"], "yolov3.weights"])
|
||
|
configPath = os.path.sep.join([args["yolo"], "yolov3.cfg"])
|
||
|
|
||
|
# load our YOLO object detector trained on COCO dataset (80 classes)
|
||
|
# and determine only the *output* layer names that we need from YOLO
|
||
|
print("[INFO] loading YOLO from disk...")
|
||
|
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
|
||
|
ln = net.getLayerNames()
|
||
|
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
|
||
|
|
||
|
# initialize the video stream, pointer to output video file, and
|
||
|
# frame dimensions
|
||
|
vs = cv2.VideoCapture(args["input"])
|
||
|
writer = None
|
||
|
(W, H) = (None, None)
|
||
|
|
||
|
# try to determine the total number of frames in the video file
|
||
|
try:
|
||
|
prop = cv2.cv.CV_CAP_PROP_FRAME_COUNT if imutils.is_cv2() \
|
||
|
else cv2.CAP_PROP_FRAME_COUNT
|
||
|
total = int(vs.get(prop))
|
||
|
print("[INFO] {} total frames in video".format(total))
|
||
|
|
||
|
# an error occurred while trying to determine the total
|
||
|
# number of frames in the video file
|
||
|
except:
|
||
|
print("[INFO] could not determine # of frames in video")
|
||
|
print("[INFO] no approx. completion time can be provided")
|
||
|
total = -1
|
||
|
|
||
|
# loop over frames from the video file stream
|
||
|
win_started = False
|
||
|
if use_webcam:
|
||
|
cap = cv2.VideoCapture(0)
|
||
|
while True:
|
||
|
# read the next frame from the file or webcam
|
||
|
if use_webcam:
|
||
|
grabbed, frame = cap.read()
|
||
|
else:
|
||
|
(grabbed, frame) = vs.read()
|
||
|
|
||
|
# if the frame was not grabbed, then we have reached the end
|
||
|
# of the stream
|
||
|
if not grabbed:
|
||
|
break
|
||
|
|
||
|
# if the frame dimensions are empty, grab them
|
||
|
if W is None or H is None:
|
||
|
(H, W) = frame.shape[:2]
|
||
|
|
||
|
# construct a blob from the input frame and then perform a forward
|
||
|
# pass of the YOLO object detector, giving us our bounding boxes
|
||
|
# and associated probabilities
|
||
|
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416),
|
||
|
swapRB=True, crop=False)
|
||
|
net.setInput(blob)
|
||
|
start = time.time()
|
||
|
layerOutputs = net.forward(ln)
|
||
|
end = time.time()
|
||
|
|
||
|
# initialize our lists of detected bounding boxes, confidences,
|
||
|
# and class IDs, respectively
|
||
|
boxes = []
|
||
|
confidences = []
|
||
|
classIDs = []
|
||
|
|
||
|
# loop over each of the layer outputs
|
||
|
for output in layerOutputs:
|
||
|
# loop over each of the detections
|
||
|
for detection in output:
|
||
|
# extract the class ID and confidence (i.e., probability)
|
||
|
# of the current object detection
|
||
|
scores = detection[5:]
|
||
|
classID = np.argmax(scores)
|
||
|
confidence = scores[classID]
|
||
|
|
||
|
# filter out weak predictions by ensuring the detected
|
||
|
# probability is greater than the minimum probability
|
||
|
if confidence > args["confidence"]:
|
||
|
# scale the bounding box coordinates back relative to
|
||
|
# the size of the image, keeping in mind that YOLO
|
||
|
# actually returns the center (x, y)-coordinates of
|
||
|
# the bounding box followed by the boxes' width and
|
||
|
# height
|
||
|
box = detection[0:4] * np.array([W, H, W, H])
|
||
|
(centerX, centerY, width, height) = box.astype("int")
|
||
|
|
||
|
# use the center (x, y)-coordinates to derive the top
|
||
|
# and and left corner of the bounding box
|
||
|
x = int(centerX - (width / 2))
|
||
|
y = int(centerY - (height / 2))
|
||
|
|
||
|
# update our list of bounding box coordinates,
|
||
|
# confidences, and class IDs
|
||
|
boxes.append([x, y, int(width), int(height)])
|
||
|
confidences.append(float(confidence))
|
||
|
classIDs.append(classID)
|
||
|
|
||
|
# apply non-maxima suppression to suppress weak, overlapping
|
||
|
# bounding boxes
|
||
|
idxs = cv2.dnn.NMSBoxes(boxes, confidences, args["confidence"],
|
||
|
args["threshold"])
|
||
|
|
||
|
# ensure at least one detection exists
|
||
|
if len(idxs) > 0:
|
||
|
# loop over the indexes we are keeping
|
||
|
for i in idxs.flatten():
|
||
|
# extract the bounding box coordinates
|
||
|
(x, y) = (boxes[i][0], boxes[i][1])
|
||
|
(w, h) = (boxes[i][2], boxes[i][3])
|
||
|
|
||
|
# draw a bounding box rectangle and label on the frame
|
||
|
color = [int(c) for c in COLORS[classIDs[i]]]
|
||
|
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
|
||
|
text = "{}: {:.4f}".format(LABELS[classIDs[i]],
|
||
|
confidences[i])
|
||
|
cv2.putText(frame, text, (x, y - 5),
|
||
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
||
|
if write_to_disk:
|
||
|
#check if the video writer is None
|
||
|
if writer is None:
|
||
|
# initialize our video writer
|
||
|
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
|
||
|
writer = cv2.VideoWriter(args["output"], fourcc, 30,
|
||
|
(frame.shape[1], frame.shape[0]), True)
|
||
|
|
||
|
# some information on processing single frame
|
||
|
if total > 0:
|
||
|
elap = (end - start)
|
||
|
print("[INFO] single frame took {:.4f} seconds".format(elap))
|
||
|
print("[INFO] estimated total time to finish: {:.4f}".format(
|
||
|
elap * total))
|
||
|
|
||
|
#write the output frame to disk
|
||
|
writer.write(frame)
|
||
|
imgbytes = cv2.imencode('.png', frame)[1].tobytes() # ditto
|
||
|
|
||
|
if not win_started:
|
||
|
win_started = True
|
||
|
layout = [
|
||
|
[sg.Text('Yolo Output')],
|
||
|
[sg.Image(data=imgbytes, key='_IMAGE_')],
|
||
|
[sg.Exit()]
|
||
|
]
|
||
|
win = sg.Window('YOLO Output',
|
||
|
default_element_size=(14, 1),
|
||
|
text_justification='right',
|
||
|
auto_size_text=False).Layout(layout).Finalize()
|
||
|
image_elem = win.FindElement('_IMAGE_')
|
||
|
else:
|
||
|
image_elem.Update(data=imgbytes)
|
||
|
|
||
|
event, values = win.Read(timeout=0)
|
||
|
if event is None or event == 'Exit':
|
||
|
break
|
||
|
|
||
|
|
||
|
win.Close()
|
||
|
|
||
|
# release the file pointers
|
||
|
print("[INFO] cleaning up...")
|
||
|
writer.release()
|
||
|
vs.release()
|