New program to use webcam with Yolo
This commit is contained in:
		
							parent
							
								
									cc2e1c160f
								
							
						
					
					
						commit
						e27a854bcc
					
				
					 1 changed files with 216 additions and 0 deletions
				
			
		
							
								
								
									
										216
									
								
								YoloObjectDetection/yolo_video_with_webcam.py
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										216
									
								
								YoloObjectDetection/yolo_video_with_webcam.py
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,216 @@ | |||
| # YOLO object detection using a webcam | ||||
| # Exact same demo as the read from disk, but instead of disk a webcam is used. | ||||
| # import the necessary packages | ||||
| import numpy as np | ||||
| # import argparse | ||||
| import imutils | ||||
| import time | ||||
| import cv2 | ||||
| import os | ||||
| import PySimpleGUI as sg | ||||
| 
 | ||||
| i_vid = r'videos/car_chase_01.mp4' | ||||
| o_vid = r'output/car_chase_01_out.mp4' | ||||
| y_path = r'yolo-coco' | ||||
| sg.ChangeLookAndFeel('LightGreen') | ||||
| layout = 	[ | ||||
| 		[sg.Text('YOLO Video Player', size=(18,1), font=('Any',18),text_color='#1c86ee' ,justification='left')], | ||||
| 		[sg.Text('Path to input video'), sg.In(i_vid,size=(40,1), key='input'), sg.FileBrowse()], | ||||
| 		[sg.Text('Optional Path to output video'), sg.In(o_vid,size=(40,1), key='output'), sg.FileSaveAs()], | ||||
| 		[sg.Text('Yolo base path'), sg.In(y_path,size=(40,1), key='yolo'), sg.FolderBrowse()], | ||||
| 		[sg.Text('Confidence'), sg.Slider(range=(0,1),orientation='h', resolution=.1, default_value=.5, size=(15,15), key='confidence')], | ||||
| 		[sg.Text('Threshold'), sg.Slider(range=(0,1), orientation='h', resolution=.1, default_value=.3, size=(15,15), key='threshold')], | ||||
| 		[sg.Text(' '*8), sg.Checkbox('Use webcam', key='_WEBCAM_')], | ||||
| 		[sg.Text(' '*8), sg.Checkbox('Write to disk', key='_DISK_')], | ||||
| 		[sg.OK(), sg.Cancel()] | ||||
| 			] | ||||
| 
 | ||||
| win = sg.Window('YOLO Video', | ||||
| 				default_element_size=(21,1), | ||||
| 				text_justification='right', | ||||
| 				auto_size_text=False).Layout(layout) | ||||
| event, values = win.Read() | ||||
| if event is None or event =='Cancel': | ||||
| 	exit() | ||||
| write_to_disk = values['_DISK_'] | ||||
| use_webcam = values['_WEBCAM_'] | ||||
| args = values | ||||
| 
 | ||||
| win.Close() | ||||
| 
 | ||||
| 
 | ||||
| # imgbytes = cv2.imencode('.png', image)[1].tobytes()  # ditto | ||||
| 
 | ||||
| # load the COCO class labels our YOLO model was trained on | ||||
| labelsPath = os.path.sep.join([args["yolo"], "coco.names"]) | ||||
| LABELS = open(labelsPath).read().strip().split("\n") | ||||
| 
 | ||||
| # initialize a list of colors to represent each possible class label | ||||
| np.random.seed(42) | ||||
| COLORS = np.random.randint(0, 255, size=(len(LABELS), 3), | ||||
| 	dtype="uint8") | ||||
| 
 | ||||
| # derive the paths to the YOLO weights and model configuration | ||||
| weightsPath = os.path.sep.join([args["yolo"], "yolov3.weights"]) | ||||
| configPath = os.path.sep.join([args["yolo"], "yolov3.cfg"]) | ||||
| 
 | ||||
| # load our YOLO object detector trained on COCO dataset (80 classes) | ||||
| # and determine only the *output* layer names that we need from YOLO | ||||
| print("[INFO] loading YOLO from disk...") | ||||
| net = cv2.dnn.readNetFromDarknet(configPath, weightsPath) | ||||
| ln = net.getLayerNames() | ||||
| ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()] | ||||
| 
 | ||||
| # initialize the video stream, pointer to output video file, and | ||||
| # frame dimensions | ||||
| vs = cv2.VideoCapture(args["input"]) | ||||
| writer = None | ||||
| (W, H) = (None, None) | ||||
| 
 | ||||
| # try to determine the total number of frames in the video file | ||||
| try: | ||||
| 	prop = cv2.cv.CV_CAP_PROP_FRAME_COUNT if imutils.is_cv2() \ | ||||
| 		else cv2.CAP_PROP_FRAME_COUNT | ||||
| 	total = int(vs.get(prop)) | ||||
| 	print("[INFO] {} total frames in video".format(total)) | ||||
| 
 | ||||
| # an error occurred while trying to determine the total | ||||
| # number of frames in the video file | ||||
| except: | ||||
| 	print("[INFO] could not determine # of frames in video") | ||||
| 	print("[INFO] no approx. completion time can be provided") | ||||
| 	total = -1 | ||||
| 
 | ||||
| # loop over frames from the video file stream | ||||
| win_started = False | ||||
| if use_webcam: | ||||
| 	cap = cv2.VideoCapture(0) | ||||
| while True: | ||||
| 	# read the next frame from the file or webcam | ||||
| 	if use_webcam: | ||||
| 		grabbed, frame = cap.read() | ||||
| 	else: | ||||
| 		(grabbed, frame) = vs.read() | ||||
| 
 | ||||
| 	# if the frame was not grabbed, then we have reached the end | ||||
| 	# of the stream | ||||
| 	if not grabbed: | ||||
| 		break | ||||
| 
 | ||||
| 	# if the frame dimensions are empty, grab them | ||||
| 	if W is None or H is None: | ||||
| 		(H, W) = frame.shape[:2] | ||||
| 
 | ||||
| 	# construct a blob from the input frame and then perform a forward | ||||
| 	# pass of the YOLO object detector, giving us our bounding boxes | ||||
| 	# and associated probabilities | ||||
| 	blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416), | ||||
| 		swapRB=True, crop=False) | ||||
| 	net.setInput(blob) | ||||
| 	start = time.time() | ||||
| 	layerOutputs = net.forward(ln) | ||||
| 	end = time.time() | ||||
| 
 | ||||
| 	# initialize our lists of detected bounding boxes, confidences, | ||||
| 	# and class IDs, respectively | ||||
| 	boxes = [] | ||||
| 	confidences = [] | ||||
| 	classIDs = [] | ||||
| 
 | ||||
| 	# loop over each of the layer outputs | ||||
| 	for output in layerOutputs: | ||||
| 		# loop over each of the detections | ||||
| 		for detection in output: | ||||
| 			# extract the class ID and confidence (i.e., probability) | ||||
| 			# of the current object detection | ||||
| 			scores = detection[5:] | ||||
| 			classID = np.argmax(scores) | ||||
| 			confidence = scores[classID] | ||||
| 
 | ||||
| 			# filter out weak predictions by ensuring the detected | ||||
| 			# probability is greater than the minimum probability | ||||
| 			if confidence > args["confidence"]: | ||||
| 				# scale the bounding box coordinates back relative to | ||||
| 				# the size of the image, keeping in mind that YOLO | ||||
| 				# actually returns the center (x, y)-coordinates of | ||||
| 				# the bounding box followed by the boxes' width and | ||||
| 				# height | ||||
| 				box = detection[0:4] * np.array([W, H, W, H]) | ||||
| 				(centerX, centerY, width, height) = box.astype("int") | ||||
| 
 | ||||
| 				# use the center (x, y)-coordinates to derive the top | ||||
| 				# and and left corner of the bounding box | ||||
| 				x = int(centerX - (width / 2)) | ||||
| 				y = int(centerY - (height / 2)) | ||||
| 
 | ||||
| 				# update our list of bounding box coordinates, | ||||
| 				# confidences, and class IDs | ||||
| 				boxes.append([x, y, int(width), int(height)]) | ||||
| 				confidences.append(float(confidence)) | ||||
| 				classIDs.append(classID) | ||||
| 
 | ||||
| 	# apply non-maxima suppression to suppress weak, overlapping | ||||
| 	# bounding boxes | ||||
| 	idxs = cv2.dnn.NMSBoxes(boxes, confidences, args["confidence"], | ||||
| 		args["threshold"]) | ||||
| 
 | ||||
| 	# ensure at least one detection exists | ||||
| 	if len(idxs) > 0: | ||||
| 		# loop over the indexes we are keeping | ||||
| 		for i in idxs.flatten(): | ||||
| 			# extract the bounding box coordinates | ||||
| 			(x, y) = (boxes[i][0], boxes[i][1]) | ||||
| 			(w, h) = (boxes[i][2], boxes[i][3]) | ||||
| 
 | ||||
| 			# draw a bounding box rectangle and label on the frame | ||||
| 			color = [int(c) for c in COLORS[classIDs[i]]] | ||||
| 			cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2) | ||||
| 			text = "{}: {:.4f}".format(LABELS[classIDs[i]], | ||||
| 				confidences[i]) | ||||
| 			cv2.putText(frame, text, (x, y - 5), | ||||
| 				cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) | ||||
| 	if write_to_disk: | ||||
| 		#check if the video writer is None | ||||
| 		if writer is None: | ||||
| 			# initialize our video writer | ||||
| 			fourcc = cv2.VideoWriter_fourcc(*"MJPG") | ||||
| 			writer = cv2.VideoWriter(args["output"], fourcc, 30, | ||||
| 				(frame.shape[1], frame.shape[0]), True) | ||||
| 
 | ||||
| 			# some information on processing single frame | ||||
| 			if total > 0: | ||||
| 				elap = (end - start) | ||||
| 				print("[INFO] single frame took {:.4f} seconds".format(elap)) | ||||
| 				print("[INFO] estimated total time to finish: {:.4f}".format( | ||||
| 					elap * total)) | ||||
| 
 | ||||
| 		#write the output frame to disk | ||||
| 		writer.write(frame) | ||||
| 	imgbytes = cv2.imencode('.png', frame)[1].tobytes()  # ditto | ||||
| 
 | ||||
| 	if not win_started: | ||||
| 		win_started = True | ||||
| 		layout = [ | ||||
| 			[sg.Text('Yolo Output')], | ||||
| 			[sg.Image(data=imgbytes, key='_IMAGE_')], | ||||
| 			[sg.Exit()] | ||||
| 		] | ||||
| 		win = sg.Window('YOLO Output', | ||||
| 						default_element_size=(14, 1), | ||||
| 						text_justification='right', | ||||
| 						auto_size_text=False).Layout(layout).Finalize() | ||||
| 		image_elem = win.FindElement('_IMAGE_') | ||||
| 	else: | ||||
| 		image_elem.Update(data=imgbytes) | ||||
| 
 | ||||
| 	event, values = win.Read(timeout=0) | ||||
| 	if event is None or event == 'Exit': | ||||
| 		break | ||||
| 
 | ||||
| 
 | ||||
| win.Close() | ||||
| 
 | ||||
| # release the file pointers | ||||
| print("[INFO] cleaning up...") | ||||
| writer.release() | ||||
| vs.release() | ||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue