PySimpleGUI/DemoPrograms/Demo_OpenCV_Simple_GUI.py

96 lines
4.2 KiB
Python

import PySimpleGUI as sg
import cv2
import numpy as np
"""
Demo program that displays a webcam using OpenCV and applies some very basic image functions
- functions from top to bottom -
none: no processing
threshold: simple b/w-threshold on the luma channel, slider sets the threshold value
canny: edge finding with canny, sliders set the two threshold values for the function => edge sensitivity
contour: colour finding in the frame, first slider sets the hue for the colour to find, second the minimum saturation
for the object. Found objects are drawn with a red contour.
blur: simple Gaussian blur, slider sets the sigma, i.e. the amount of blur smear
hue: moves the image hue values by the amount selected on the slider
enhance: applies local contrast enhancement on the luma channel to make the image fancier - slider controls fanciness.
"""
def main():
sg.change_look_and_feel('LightGreen')
# define the window layout
layout = [
[sg.Text('OpenCV Demo', size=(40, 1), justification='center')],
[sg.Image(filename='', key='image')],
[sg.Radio('None', 'Radio', True, size=(10, 1))],
[sg.Radio('threshold', 'Radio', size=(10, 1), key='thresh'),
sg.Slider((0, 255), 128, 1, orientation='h', size=(40, 15), key='thresh_slider')],
[sg.Radio('canny', 'Radio', size=(10, 1), key='canny'),
sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='canny_slider_a'),
sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='canny_slider_b')],
[sg.Radio('contour', 'Radio', size=(10, 1), key='contour'),
sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='contour_slider'),
sg.Slider((0, 255), 80, 1, orientation='h', size=(20, 15), key='base_slider')],
[sg.Radio('blur', 'Radio', size=(10, 1), key='blur'),
sg.Slider((1, 11), 1, 1, orientation='h', size=(40, 15), key='blur_slider')],
[sg.Radio('hue', 'Radio', size=(10, 1), key='hue'),
sg.Slider((0, 225), 0, 1, orientation='h', size=(40, 15), key='hue_slider')],
[sg.Radio('enhance', 'Radio', size=(10, 1), key='enhance'),
sg.Slider((1, 255), 128, 1, orientation='h', size=(40, 15), key='enhance_slider')],
[sg.Button('Exit', size=(10, 1))]
]
# create the window and show it without the plot
window = sg.Window('Demo Application - OpenCV Integration',
layout,
location=(800, 400),
finalize=True)
cap = cv2.VideoCapture(0)
while True:
event, values = window.read(timeout=0, timeout_key='timeout')
if event == 'Exit' or event is None:
break
ret, frame = cap.read()
if values['thresh']:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2LAB)[:, :, 0]
frame = cv2.threshold(frame, values['thresh_slider'], 255, cv2.THRESH_BINARY)[1]
if values['canny']:
frame = cv2.Canny(frame, values['canny_slider_a'], values['canny_slider_b'])
if values['blur']:
frame = cv2.GaussianBlur(frame, (21, 21), values['blur_slider'])
if values['hue']:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
frame[:, :, 0] += values['hue_slider']
frame = cv2.cvtColor(frame, cv2.COLOR_HSV2BGR)
if values['enhance']:
enh_val = values['enhance_slider'] / 40
clahe = cv2.createCLAHE(clipLimit=enh_val, tileGridSize=(8, 8))
lab = cv2.cvtColor(frame, cv2.COLOR_BGR2LAB)
lab[:, :, 0] = clahe.apply(lab[:, :, 0])
frame = cv2.cvtColor(lab, cv2.COLOR_LAB2BGR)
if values['contour']:
hue = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
hue = cv2.GaussianBlur(hue, (21, 21), 1)
hue = cv2.inRange(hue, np.array([values['contour_slider'], values['base_slider'], 40]),
np.array([values['contour_slider'] + 30, 255, 220]))
cnts = cv2.findContours(hue, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[1]
cv2.drawContours(frame, cnts, -1, (0, 0, 255), 2)
imgbytes = cv2.imencode('.png', frame)[1].tobytes()
window['image'].update(data=imgbytes)
window.close()
main()