# YOLO object detection using a webcam # Exact same demo as the read from disk, but instead of disk a webcam is used. # import the necessary packages import numpy as np # import argparse import imutils import time import cv2 import os import PySimpleGUI as sg i_vid = r'videos\car_chase_01.mp4' o_vid = r'output\car_chase_01_out.mp4' y_path = r'yolo-coco' sg.ChangeLookAndFeel('LightGreen') layout = [ [sg.Text('YOLO Video Player', size=(18,1), font=('Any',18),text_color='#1c86ee' ,justification='left')], [sg.Text('Path to input video'), sg.In(i_vid,size=(40,1), key='input'), sg.FileBrowse()], [sg.Text('Optional Path to output video'), sg.In(o_vid,size=(40,1), key='output'), sg.FileSaveAs()], [sg.Text('Yolo base path'), sg.In(y_path,size=(40,1), key='yolo'), sg.FolderBrowse()], [sg.Text('Confidence'), sg.Slider(range=(0,1),orientation='h', resolution=.1, default_value=.5, size=(15,15), key='confidence')], [sg.Text('Threshold'), sg.Slider(range=(0,1), orientation='h', resolution=.1, default_value=.3, size=(15,15), key='threshold')], [sg.Text(' '*8), sg.Checkbox('Use webcam', key='_WEBCAM_')], [sg.Text(' '*8), sg.Checkbox('Write to disk', key='_DISK_')], [sg.OK(), sg.Cancel()] ] win = sg.Window('YOLO Video', default_element_size=(21,1), text_justification='right', auto_size_text=False).Layout(layout) event, values = win.Read() if event is None or event =='Cancel': exit() write_to_disk = values['_DISK_'] use_webcam = values['_WEBCAM_'] args = values win.Close() # imgbytes = cv2.imencode('.png', image)[1].tobytes() # ditto gui_confidence = args["confidence"] gui_threshold = args["threshold"] # load the COCO class labels our YOLO model was trained on labelsPath = os.path.sep.join([args["yolo"], "coco.names"]) LABELS = open(labelsPath).read().strip().split("\n") # initialize a list of colors to represent each possible class label np.random.seed(42) COLORS = np.random.randint(0, 255, size=(len(LABELS), 3), dtype="uint8") # derive the paths to the YOLO weights and model configuration weightsPath = os.path.sep.join([args["yolo"], "yolov3.weights"]) configPath = os.path.sep.join([args["yolo"], "yolov3.cfg"]) # load our YOLO object detector trained on COCO dataset (80 classes) # and determine only the *output* layer names that we need from YOLO print("[INFO] loading YOLO from disk...") net = cv2.dnn.readNetFromDarknet(configPath, weightsPath) ln = net.getLayerNames() ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()] # initialize the video stream, pointer to output video file, and # frame dimensions vs = cv2.VideoCapture(args["input"]) writer = None (W, H) = (None, None) # try to determine the total number of frames in the video file try: prop = cv2.cv.CV_CAP_PROP_FRAME_COUNT if imutils.is_cv2() \ else cv2.CAP_PROP_FRAME_COUNT total = int(vs.get(prop)) print("[INFO] {} total frames in video".format(total)) # an error occurred while trying to determine the total # number of frames in the video file except: print("[INFO] could not determine # of frames in video") print("[INFO] no approx. completion time can be provided") total = -1 # loop over frames from the video file stream win_started = False if use_webcam: cap = cv2.VideoCapture(0) while True: # read the next frame from the file or webcam if use_webcam: grabbed, frame = cap.read() else: grabbed, frame = vs.read() # if the frame was not grabbed, then we have reached the end # of the stream if not grabbed: break # if the frame dimensions are empty, grab them if W is None or H is None: (H, W) = frame.shape[:2] # construct a blob from the input frame and then perform a forward # pass of the YOLO object detector, giving us our bounding boxes # and associated probabilities blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416), swapRB=True, crop=False) net.setInput(blob) start = time.time() layerOutputs = net.forward(ln) end = time.time() # initialize our lists of detected bounding boxes, confidences, # and class IDs, respectively boxes = [] confidences = [] classIDs = [] # loop over each of the layer outputs for output in layerOutputs: # loop over each of the detections for detection in output: # extract the class ID and confidence (i.e., probability) # of the current object detection scores = detection[5:] classID = np.argmax(scores) confidence = scores[classID] # filter out weak predictions by ensuring the detected # probability is greater than the minimum probability if confidence > gui_confidence: # scale the bounding box coordinates back relative to # the size of the image, keeping in mind that YOLO # actually returns the center (x, y)-coordinates of # the bounding box followed by the boxes' width and # height box = detection[0:4] * np.array([W, H, W, H]) (centerX, centerY, width, height) = box.astype("int") # use the center (x, y)-coordinates to derive the top # and and left corner of the bounding box x = int(centerX - (width / 2)) y = int(centerY - (height / 2)) # update our list of bounding box coordinates, # confidences, and class IDs boxes.append([x, y, int(width), int(height)]) confidences.append(float(confidence)) classIDs.append(classID) # apply non-maxima suppression to suppress weak, overlapping # bounding boxes idxs = cv2.dnn.NMSBoxes(boxes, confidences, gui_confidence, gui_threshold) # ensure at least one detection exists if len(idxs) > 0: # loop over the indexes we are keeping for i in idxs.flatten(): # extract the bounding box coordinates (x, y) = (boxes[i][0], boxes[i][1]) (w, h) = (boxes[i][2], boxes[i][3]) # draw a bounding box rectangle and label on the frame color = [int(c) for c in COLORS[classIDs[i]]] cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2) text = "{}: {:.4f}".format(LABELS[classIDs[i]], confidences[i]) cv2.putText(frame, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) if write_to_disk: #check if the video writer is None if writer is None: # initialize our video writer fourcc = cv2.VideoWriter_fourcc(*"MJPG") writer = cv2.VideoWriter(args["output"], fourcc, 30, (frame.shape[1], frame.shape[0]), True) # some information on processing single frame if total > 0: elap = (end - start) print("[INFO] single frame took {:.4f} seconds".format(elap)) print("[INFO] estimated total time to finish: {:.4f}".format( elap * total)) #write the output frame to disk writer.write(frame) imgbytes = cv2.imencode('.png', frame)[1].tobytes() # ditto if not win_started: win_started = True layout = [ [sg.Text('Yolo Playback in PySimpleGUI Window', size=(30,1))], [sg.Image(data=imgbytes, key='_IMAGE_')], [sg.Text('Confidence'), sg.Slider(range=(0, 1), orientation='h', resolution=.1, default_value=.5, size=(15, 15), key='confidence'), sg.Text('Threshold'), sg.Slider(range=(0, 1), orientation='h', resolution=.1, default_value=.3, size=(15, 15), key='threshold')], [sg.Exit()] ] win = sg.Window('YOLO Output', default_element_size=(14, 1), text_justification='right', auto_size_text=False).Layout(layout).Finalize() image_elem = win.FindElement('_IMAGE_') else: image_elem.Update(data=imgbytes) event, values = win.Read(timeout=0) if event is None or event == 'Exit': break gui_confidence = values['confidence'] gui_threshold = values['threshold'] win.Close() # release the file pointers print("[INFO] cleaning up...") writer.release() if writer is not None else None vs.release()