#!/usr/bin/env python import sys if sys.version_info[0] < 3: import PySimpleGUI27 as sg else: import PySimpleGUI as sg def MachineLearningGUI(): sg.SetOptions(text_justification='right') flags = [[sg.Checkbox('Normalize', size=(12, 1), default=True), sg.Checkbox('Verbose', size=(20, 1))], [sg.Checkbox('Cluster', size=(12, 1)), sg.Checkbox('Flush Output', size=(20, 1), default=True)], [sg.Checkbox('Write Results', size=(12, 1)), sg.Checkbox('Keep Intermediate Data', size=(20, 1))], [sg.Checkbox('Normalize', size=(12, 1), default=True), sg.Checkbox('Verbose', size=(20, 1))], [sg.Checkbox('Cluster', size=(12, 1)), sg.Checkbox('Flush Output', size=(20, 1), default=True)], [sg.Checkbox('Write Results', size=(12, 1)), sg.Checkbox('Keep Intermediate Data', size=(20, 1))],] loss_functions = [[sg.Radio('Cross-Entropy', 'loss', size=(12, 1)), sg.Radio('Logistic', 'loss', default=True, size=(12, 1))], [sg.Radio('Hinge', 'loss', size=(12, 1)), sg.Radio('Huber', 'loss', size=(12, 1))], [sg.Radio('Kullerback', 'loss', size=(12, 1)), sg.Radio('MAE(L1)', 'loss', size=(12, 1))], [sg.Radio('MSE(L2)', 'loss', size=(12, 1)), sg.Radio('MB(L0)', 'loss', size=(12, 1))],] command_line_parms = [[sg.Text('Passes', size=(8, 1)), sg.Spin(values=[i for i in range(1, 1000)], initial_value=20, size=(6, 1)), sg.Text('Steps', size=(8, 1), pad=((7,3))), sg.Spin(values=[i for i in range(1, 1000)], initial_value=20, size=(6, 1))], [sg.Text('ooa', size=(8, 1)), sg.In(default_text='6', size=(8, 1)), sg.Text('nn', size=(8, 1)), sg.In(default_text='10', size=(10, 1))], [sg.Text('q', size=(8, 1)), sg.In(default_text='ff', size=(8, 1)), sg.Text('ngram', size=(8, 1)), sg.In(default_text='5', size=(10, 1))], [sg.Text('l', size=(8, 1)), sg.In(default_text='0.4', size=(8, 1)), sg.Text('Layers', size=(8, 1)), sg.Drop(values=('BatchNorm', 'other'), auto_size_text=True)],] layout = [[sg.Frame('Command Line Parameteres', command_line_parms, title_color='green', font='Any 12')], [sg.Frame('Flags', flags, font='Any 12', title_color='blue')], [sg.Frame('Loss Functions', loss_functions, font='Any 12', title_color='red')], [sg.Submit(), sg.Cancel()]] window = sg.Window('Machine Learning Front End', font=("Helvetica", 12)).Layout(layout) button, values = window.Read() sg.SetOptions(text_justification='left') print(button, values) def CustomMeter(): # layout the form layout = [[sg.Text('A custom progress meter')], [sg.ProgressBar(10000, orientation='h', size=(20,20), key='progress')], [sg.Cancel()]] # create the form` window = sg.Window('Custom Progress Meter').Layout(layout) progress_bar = window.FindElement('progress') # loop that would normally do something useful for i in range(10000): # check to see if the cancel button was clicked and exit loop if clicked button, values = window.ReadNonBlocking() if button == 'Cancel' or values == None: break # update bar with loop value +1 so that bar eventually reaches the maximum progress_bar.UpdateBar(i+1) # done with loop... need to destroy the window as it's still open window.CloseNonBlocking() if __name__ == '__main__': CustomMeter() MachineLearningGUI()