import PySimpleGUI as sg # import PySimpleGUIQt as sg # import PySimpleGUIWeb as sg import numpy as np from matplotlib.backends.backend_tkagg import FigureCanvasAgg import matplotlib.figure import matplotlib.pyplot as plt import io from matplotlib import cm from mpl_toolkits.mplot3d.axes3d import get_test_data from matplotlib.ticker import NullFormatter # useful for `logit` scale """ Demo - Matplotlib Embedded figure in a window TEMPLATE The reason this program is labelled as a "Template" is that it functions on 3 PySimpleGUI ports by only changing the import statement. tk, Qt, Web(Remi) all run this same code and produce identical results. Copyright 2020 PySimpleGUI.org """ def create_axis_grid(): from mpl_toolkits.axes_grid1.axes_rgb import RGBAxes plt.close('all') def get_demo_image(): # prepare image delta = 0.5 extent = (-3, 4, -4, 3) x = np.arange(-3.0, 4.001, delta) y = np.arange(-4.0, 3.001, delta) X, Y = np.meshgrid(x, y) Z1 = np.exp(-X ** 2 - Y ** 2) Z2 = np.exp(-(X - 1) ** 2 - (Y - 1) ** 2) Z = (Z1 - Z2) * 2 return Z, extent def get_rgb(): Z, extent = get_demo_image() Z[Z < 0] = 0. Z = Z / Z.max() R = Z[:13, :13] G = Z[2:, 2:] B = Z[:13, 2:] return R, G, B fig = plt.figure(1) ax = RGBAxes(fig, [0.1, 0.1, 0.8, 0.8]) r, g, b = get_rgb() kwargs = dict(origin="lower", interpolation="nearest") ax.imshow_rgb(r, g, b, **kwargs) ax.RGB.set_xlim(0., 9.5) ax.RGB.set_ylim(0.9, 10.6) plt.draw() return plt.gcf() def create_figure(): # ------------------------------- START OF YOUR MATPLOTLIB CODE ------------------------------- fig = matplotlib.figure.Figure(figsize=(5, 4), dpi=100) t = np.arange(0, 3, .01) fig.add_subplot(111).plot(t, 2 * np.sin(2 * np.pi * t)) return fig def create_subplot_3d(): fig = plt.figure() ax = fig.add_subplot(1, 2, 1, projection='3d') X = np.arange(-5, 5, 0.25) Y = np.arange(-5, 5, 0.25) X, Y = np.meshgrid(X, Y) R = np.sqrt(X ** 2 + Y ** 2) Z = np.sin(R) surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.jet, linewidth=0, antialiased=False) ax.set_zlim3d(-1.01, 1.01) fig.colorbar(surf, shrink=0.5, aspect=5) ax = fig.add_subplot(1, 2, 2, projection='3d') X, Y, Z = get_test_data(0.05) ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10) return fig def create_pyplot_scales(): plt.close('all') # Fixing random state for reproducibility np.random.seed(19680801) # make up some data in the interval ]0, 1[ y = np.random.normal(loc=0.5, scale=0.4, size=1000) y = y[(y > 0) & (y < 1)] y.sort() x = np.arange(len(y)) # plot with various axes scales plt.figure(1) # linear plt.subplot(221) plt.plot(x, y) plt.yscale('linear') plt.title('linear') plt.grid(True) # log plt.subplot(222) plt.plot(x, y) plt.yscale('log') plt.title('log') plt.grid(True) # symmetric log plt.subplot(223) plt.plot(x, y - y.mean()) plt.yscale('symlog', linthreshy=0.01) plt.title('symlog') plt.grid(True) # logit plt.subplot(224) plt.plot(x, y) plt.yscale('logit') plt.title('logit') plt.grid(True) # Format the minor tick labels of the y-axis into empty strings with # `NullFormatter`, to avoid cumbering the axis with too many labels. plt.gca().yaxis.set_minor_formatter(NullFormatter()) # Adjust the subplot layout, because the logit one may take more space # than usual, due to y-tick labels like "1 - 10^{-3}" plt.subplots_adjust(top=0.92, bottom=0.08, left=0.10, right=0.95, hspace=0.25, wspace=0.35) return plt.gcf() # ----------------------------- The draw figure helpful function ----------------------------- def draw_figure(element, figure): """ Draws the previously created "figure" in the supplied Image Element :param element: an Image Element :param figure: a Matplotlib figure :return: The figure canvas """ plt.close('all') # erases previously drawn plots canv = FigureCanvasAgg(figure) buf = io.BytesIO() canv.print_figure(buf, format='png') if buf is None: return None buf.seek(0) element.update(data=buf.read()) return canv # ----------------------------- The GUI Section ----------------------------- def main(): dictionary_of_figures = {'Axis Grid': create_axis_grid, 'Subplot 3D': create_subplot_3d, 'Scales': create_pyplot_scales, 'Basic Figure': create_figure} left_col = [[sg.T('Figures to Draw')], [sg.Listbox(list(dictionary_of_figures), default_values=[list(dictionary_of_figures)[0]], size=(15, 5), key='-LB-')], [sg.T('Matplotlib Styles')], [sg.Combo(plt.style.available, key='-STYLE-')]] layout = [ [sg.T('Matplotlib Example', font='Any 20')], [sg.Column(left_col), sg.Image(key='-IMAGE-')], [sg.B('Draw'), sg.B('Exit')] ] window = sg.Window('Matplotlib Template', layout) image_element = window['-IMAGE-'] # type: sg.Image while True: event, values = window.read() print(event, values) if event == 'Exit' or event == sg.WIN_CLOSED: break if event == 'Draw' and values['-LB-']: # Get the function to call to make figure. Done this way to get around bug in Web port (default value not working correctly for listbox) func = dictionary_of_figures.get(values['-LB-'][0], list(dictionary_of_figures.values())[0]) if values['-STYLE-']: plt.style.use(values['-STYLE-']) draw_figure(image_element, func()) window.close() if __name__ == "__main__": main()