
downloadsdownloads 231k231k

downloadsdownloads 105k105k

downloadsdownloads 96k96k

downloadsdownloads 30k30k

downloadsdownloads 114k114k

Awesome meterAwesome meter 100100

PythonPython 2.7 3.x2.7 3.x

P Y S I M P L E G U I F O R P Y T H ON 3 . X VE R S I O N 4.5 .0

P Y S I M P L E G U I F O R P Y T H ON 2 . 7 V E R S I O N 2.4 .1

PySimpleGUI
pysimplegui.readthedocs.io/en/latest

tkinter tkinter 2.7 Qt WxPython Web (Remi)

docsdocs passingpassing

1/511

https://pysimplegui.readthedocs.io/en/latest/
http://pepy.tech/project/pysimplegui
https://pepy.tech/project/pysimplegui27
https://pepy.tech/project/pysimpleguiqt
https://pepy.tech/project/pysimpleguiWx
https://pepy.tech/project/pysimpleguiWeb

P Y S I M P L E G U I Q T V E R S I O N 0.28.0

P Y S I M P L E G U I W X V E R S I O N 0.11.0

P Y S I M P L E G U I W E B V E R S IO N 0.28.1

PySimpleGUI User's Manual

Python GUI For Humans - Transforms tkinter, Qt, Remi,
WxPython into portable people-friendly Pythonic interfaces

This manual is crammed full of answers so start your search for
answers here. Read/Search this prior to opening an Issue on GitHub.
Press Control F and type.

Jump-Start

Install

pip install pysimplegui
or
pip3 install pysimplegui

This Code

2/511

import PySimpleGUI as sg
sg.change_look_and_feel('DarkAmber')

layout = [[sg.Text('Some text on Row 1')],
 [sg.Text('Enter something on Row 2'), sg.InputText()],
 [sg.Button('Ok'), sg.Button('Cancel')]]

window = sg.Window('Window Title', layout)

while True:
 event, values = window.read()
 if event in (None, 'Cancel'):
 break
 print('You entered ', values[0])

window.close()

Makes This Window

and returns the value input as well as the button clicked.

Any Questions? It's that simple.

Looking for a GUI package? Are you....

looking to take your Python code from the world of command lines and into the
convenience of a GUI?
sitting on a Raspberry Pi with a touchscreen that's going to waste because you don't
have the time to learn a GUI SDK?
into Machine Learning and are sick of the command line?
an IT guy/gal that has written some cool tools but due to corporate policies are unable to
share unless an EXE file?
wanting to distribute your Python code to Windows users as a single .EXE file that
launches straight into a GUI, much like a WinForms app?
want to share your program with your friends or families (that aren't so freakish that
they have Python running)
wanting to run a program in your system tray?
a teacher wanting to teach your students how to program using a GUI?

3/511

a student that wants to put a GUI onto your project that will blow away your teacher?
looking for a GUI package that is "supported" and is being constantly developed to
improve it?
longing for documentation and scores of examples?

Look no further, you've found your GUI package.

The basics

Create windows that look and operate identically to those created directly with tkinter,
Qt, WxPython, and Remi.
Requires 1/2 to 1/10th the amount of code as underlying frameworks.
One afternoon is all that is required to learn the PySimpleGUI package and write your
first custom GUI.
Students can begin using within their first week of Python education.
No callback functions. You do not need to write the word class anywhere in your code.
Access to nearly every underlying GUI Framework's Widgets.
Supports both Python 2.7 & 3 when using tkinter
Supports both PySide2 and PyQt5 (limited support)
Effortlessly move across tkinter, Qt, WxPython, and the Web (Remi) by changing only the
import statement
The only way to write both desktop and web based GUIs at the same time in Python
Developed from nothing as a pure Python impelementation with Python friendly
interfaces.
Run your program in the System Tray using WxPython. Or, change the import and run it
on Qt with no other changes.
Works with Qt Designer
Built in Debugger
Actively maintained and enhanced - 4 ports are underway, all being used by users.
Corporate as well as home users.
Appealing to both newcomers to Python and experiened Pythonistas.
The focus is entirely on the developer (you) and making their life easier, simplified, and
in control.
170+ Demo Programs teach you how to integrate with many popular packages like
OpenCV, Matplotlib, PyGame, etc.
200 pages of documentation, a Cookbook, built-in help using docstrings, in short it's
heavily documented

July-2019 Note - This readme is being generated from the PySimpleGUI.py file
located on GitHub. As a result, some of the calls or parameters may not match
the PySimpleGUI that you pip installed.

GUI Development does not have to be difficult nor painful. It can4/511

GUI Development does not have to be difficult nor painful. It can
be FUN

What users are saying about PySimpleGUI

(None of these comments were solicited & are not paid endorsements - other than a huge
thank you they received!)

"I've been working to learn PyQT for the past week in my off time as an intro to GUI design and
how to apply it to my existing scripts... Took me ~30 minutes to figure out PySimpleGUI and
get my scripts working with a GUI."

"Python has been an absolute nightmare for me and I've avoided it like the plague. Until I saw
PysimpleGUI."

"I've been pretty amazed at how much more intuitive it is than raw tk/qt. The dude developing
it is super active on the project too so if you come across situations that you just can't get the
code to do what you want you can make bug/enhancement issues that are almost assured to
get a meaningful response."

"This library is the easiest way of gui programming in python! I'm totally in love with it"

"Wow that readme is extensive and great." (hear the love for docs often)

"Coming from R, Python is absolutely slick for GUIs. PySimpleGUI is a dream."

"I have been writing Python programs for about 4 or 5 months now. Up until this week I never
had luck with any UI libraries like Tkinter, Qt, Kivy. I went from not even being able to load a
window in Tkinter reliably to making a loading screen, and full program in one night with
PySimpleGUI."

"I love PySimpleGUI! I've been teaching it in my Python classes instead of Tkinter."

"I wish PySimpleGUI was available for every friggin programming language"

START HERE - User Manual with Table of Contents

ReadTheDocs <------ THE best place to read the docs due to TOC, all docs in 1 place, and better
formatting. START here in your education. Easy to remember PySimpleGUI.org.

Quick Links To Help and The Latest News and Releases

Homepage - Lastest Readme and Code - GitHub Easy to remember: PySimpleGUI.com

Announcements of Latest Developments, Release news, Misc

5/511

http://www.pysimplegui.org/
http://www.pysimplegui.com/
https://github.com/PySimpleGUI/PySimpleGUI/issues/142

COOKBOOK!

Brief Tutorial

Latest Demos and Master Branch on GitHub

Repl.it Home for PySimpleGUI

Lots of screenshots

How to submit an Issue

The YouTube videos - If you like instructional videos, there are over 15 videos - 5 part series of
basics - 10 part series of more detail - The Naked Truth (An updaate on the technology) - There
are numerous short videos also on that channel that demonstrate PySimpleGUI being used

About The PySimpleGUI Documentation System
This User's Manual (also the project's readme) is one vital part of the PySimpleGUI
programming environment.

If you are a professional or skilled in how to develop software, then you understand the role of
documentation in the world of technology development. You can skip this bit.... look for the
bold "GO TO HERE" below.

RTFM is not a new acronym. It stretches back to 1979, the dawn of the computer-era and in
particular the microprocessor. The point is that this is not a new problem. It's a very old
problem.

Bluntness is required here as the subtle approach has not worked in the past:

It WILL be required, at times, for you to read or search this document in order to be
successful.

Re-read that statement. This will be a serious problem for you if you're the type of person that
finds it "quicker and easier to post on StackOverflow rather than reading documentation".

If you have not yet matured to the point you are able to understand this skill or choose to not
follow it, then please save everyone the pain of doing for you what you, as a developer,
software engineer, or wanna be coder, must do on your own. It's a vital skill for you to learn.

Want to be a "real engineer"? Then follow "real engineering practices" such as "reading". You
are learning a NEW GUI package. You've not seen anything like it. Don't be so arrogant as to
believe you will never need to read documentation.

UGH, why does this need to be said?

6/511

http://cookbook.pysimplegui.org/
http://tutorial.pysimplegui.org/
https://github.com/PySimpleGUI/PySimpleGUI/tree/master/DemoPrograms
https://repl.it/@PySimpleGUI
https://www.bountysource.com/issues/60766522-screen-shots
https://github.com/PySimpleGUI/PySimpleGUI/issues/1646
https://www.youtube.com/playlist?list=PLl8dD0doyrvHMoJGTdMtgLuHymaqJVjzt
https://www.youtube.com/playlist?list=PLl8dD0doyrvGyXjORNvirTIZxKopJr8s0
https://youtu.be/BFTxBmihsUY

GO TO HERE if instructed above.

I appologize to the other 95% of you that this..... pathetic.... reminder needs to be added, but
sadly there's a need for it.

There are 5 resources that work together to provide to you the fastest path to success. They
are:

1. This User's Manual
2. The Cookbook
3. The 170+ Demo Programs
4. Docstrings enable you to access help directly from Python or your IDE
5. Searching the GitHub Issues as a last resort (search both open and closed issues)

Pace yourself. The intial progress is exciting and FAST PACED. However, GUIs take time and
thought to build. Take a deep breath and use the provided materials and you'll do fine. Don't
skip the design phase of your GUI after you run some demos and get the hang of things. If
you've tried other GUI frameworks before, successful or not, then you know you're already
way ahead of the game using PySimpleGUI versus the underlying GUI frameworks. It may feel
like the 3 days you've been working on your code has been forever, but by comparison of 3
days learning Qt, PySimpleGUI will look trivial to learn.

It is not by accident that this section, about documentation, is at the TOP of this document.

This documentation is not HUGE in length for a package this size. In fact it's still one document
and it's the readme for the GitHub. It's not written in complex english. It is understandable by
complete beginners. And pressing Control+F is all you need to do to search this document.
USUALLY you'll find less than 6 matches.

Documentation and Demos Get Out of Date
Sometimes the documenation doesn't match exactly the version of the code you're running.
Sometimes demo programs haven't been updated to match a change made to the SDK. Things
don't happen simultaneously generally speaking. So, it may very well be that you find an error
or inconsistency or something no longer works with the latest version of an external library.

If you've found one of these problems, and you've searched to make sure it's not a simple
mistake on your part, then by ALL means log an Issue on the GitHub. Don't be afraid to report
problems if you've taken the simple steps of checking out the docs first.

Platforms

Hardware and OS Support
7/511

PySimpleGUI runs on Windows, Linux and Mac, just like tkinter, Qt, WxPython and Remi do. If
you can get the underlying GUI Framework installed / running on your machine then
PySimpleGUI will also run there.

Hardware

PC's, Desktop, Laptops
Macs of all types
Raspberry Pi
Android devices like phones and tablets
Virtual machine online (no hardware) - repl.it

OS

Windows 7, 8, 10
Linux on PC - Tested on many distributions
Linux on Raspbnerry Pi
Linux on Android - Can use either Termux or PyDroid3
Mac OS (Sorry don't know much about Macs other than Macs don't like tkinter)

Python versions

As of 9/25/2018 both Python 3 and Python 2.7 are supported when using tkinter version of
PySimpleGUI! The Python 3 version is named PySimpleGUI . The Python 2.7 version is
PySimpleGUI27 . They are installed separately and the imports are different. See instructions

in Installation section for more info. None of the other ports can use Python 2.

Python 2.7 Code will be deleted from this GitHub on Dec 31, 2019

Note that the 2.7 port will cease to exist on this GitHub on Jan 1, 2020. If you would like to know
how much time you have to move over to the Python 3 version of PySimpleGUI, then go here:
https://pythonclock.org/. The only thing that will be available is an unsupported PyPI release of
PySimpleGUI27.

By "will cease to exist on this GitHub" I mean, it will be deleted entirely. No source code, no
supporting programs. Nothing. If you're stuck using 2.7 in December, it would behoove you to
fork the 2.7 code on Dec 31, 2019. Legacy Python doesn't have a permanent home here. It
sounds cruel, but experts in security particularly says 2.7 is a huge risk. Furthering it use only
hurts the computing world.

Warning - tkinter + Python 3.7.3 and later, including 3.8 has problems

The version of tkinter that is being supplied with the 3.7.3 and later versions of Python is
known to have a problem with table colors. Basically, they don't work. As a result, if you want
to use the plain PySimpleGUI running on tkinter, you should be using 3.7.2 or less. 3.6 is the

8/511

version PySimpleGUI has chosen as the recommended version for most users.

Output Devices
In addition to running as a desktop GUI, you can also run your GUI in a web browser by
running PySimpleGUIWeb.

This is ideal for "headless" setups like a Raspberry Pi that is at the core of a robot or other
design that does not have a normal display screen. For these devices, run a PySimpleGUIWeb
program that never exits.

Then connect to your application by going to the Pi's IP address (and port #) using a browser
and you'll be in communication with your application. You can use it to make configuration
changes or even control a robot or other piece of hardward using buttons in your GUI

A Complete PySimpleGUI Program (Getting The Gist)
Before diving into details, here's a description of what PySimpleGUI is/does and why that is so
powerful.

You keep hearing "custom window" in this document because that's what you're making and
using... your own custom windows.

ELEMENTS is a word you'll see everywhere... in the code, documentation, ... Elements ==
PySimpleGUI's Widgets. As to not confuse a tkinter Button Widget with a PySimpleGUI Button
Element, it was decided that PySimpleGUI's Widgets will be called Elements to avoid confusion.

Wouldn't it be nice if a GUI with 3 "rows" of Elements was defined in 3 lines of code? That's
exactly how it's done. Each row of Elements is a list. Put all those lists together and you've got
a window.

What about handling button clicks and stuff. That's 4 lines of the code below beginning with
the while loop.

Now look at the layout variable and then look at the window graphic below. Defining a
window is taking a design you can see visually and then visually creating it in code. One row of
Elements = 1 line of code (can span more if your window is crowded). The window is exactly
what we see in the code. A line of text, a line of text and an input area, and finally ok and
cancel buttons.

This makes the coding process extremely quick and the amount of code very small

9/511

import PySimpleGUI as sg
sg.change_look_and_feel('DarkAmber')

layout = [[sg.Text('Some text on Row 1')],
 [sg.Text('Enter something on Row 2'), sg.InputText()],
 [sg.OK(), sg.Cancel()]]

window = sg.Window('Window Title', layout)

while True:
 event, values = window.read()
 if event in (None, 'Cancel'):
 break

window.close()

You gotta admit that the code above is a lot more "fun" looking that tkinter code you've
studied before. Adding stuff to your GUI is trivial. You can clearly see the "mapping" of those 3
lines of code to specific Elements laid out in a Window. It's not a trick. It's how easy it is to code
in PySimpleGUI. With this simple concept comes the ability to create any window layout you
wish. There are parameters to move elements around inside the window should you need
more control.

It's a thrill to complete your GUI project way ahead of what you estimated. Some people take
that extra time to polish their GUI to make it even nicer, adding more bells and whistles
because it's so easy and it's a lot of fun to see success after success as you write your program.

Some are more advanced users and push the boundaries out and extend PySimpleGUI using
their own extensions.

Others, like IT people and hackers are busily cranking out GUI program after GUI program, and
creating tools that others can use. Finally there's an easy way to throw a GUI onto your
program and give it to someone. It's a pretty big leap in capability for some people. It's GREAT
to hear these successes. It's motivating for everyone in the end. Your success can easily
motivate the next person to give it a try and also potentially be successful.

Usually there's a one to one mapping of a PySimpleGUI Element to a GUI Widget. A "Text
Element" in PySimpleGUI == "Label Widget" in tkinter. What remains constant for you across
all PySimpleGUI platforms is that no matter what the underlying GUI framework calls the thing

10/511

that places text in your window, you'll always use the PySimpleGUI Text Element to access it.

The final bit of magic is in how Elements are created and changed.

So far you've seen simply layouts with no customization of the Elements. Customizing and
configuring Elements is another place PySimpleGUI utilizes the Python language to make your
life easier.

What about Elements that have settings other than the standard system settings? What if I
want my Text to be blue, with a Courier font on a green background. It's written quite simply:

Text('This is some text', font='Courier 12', text_color='blue', background_color='green')

The Python named parameters are extensively in PySimpleGUI. They are key in making the
code compact, readable, and trivial to write.

As you'll learn in later sections that discuss the parameters to the Elements, there are a LOT of
options avilable to you should you choose to use them. The Text Element has 15 parameters
that you can change. This is one reason why PyCharm is suggested as your IDE... it does a
fantastic job of displaying documentation as you type in your code.

That's The Basics

What do you think? Easier so far than your previous run-ins with GUIs in Python? Some
programs, many in fact, are as simple as this example has been.

But PySimpleGUI certainly does not end here. This is the beginning. The scaffolding you'll
build upon.

The Underlying GUI Frameworks & Status of Each
At the moment there are 4 acitvely developed and maintained "ports" of PySimpleGUI. These
include:

1. tkinter - Fully complete
2. Qt using Pyside2 - Alpha stage. Not all features for all Elements are done
3. WxPython - Development stage, pre-releaser. Not all Elements are done. Some known

problems with multiple windows
4. Remi (Web browser support) - Development stage, pre-release.

While PySimpleGUI, the tkinter port, is the only 100% completed version of PySimpleGUI, the
other 3 ports have a LOT of functionality in them and are in active use by a large portion of the
installations. You can see the number of Pip installs at the very top of this document to get a
comparison as to the size of the install base for each port. The "badges" are right after the
logo.

11/511

The PySimpleGUI "Family"

What's The Big Deal? What is it?
PySimpleGUI wraps tkinter, Qt, WxPython and Remi so that you get all the same widgets, but
you interact with them in a more friendly way that's common across the ports.

What does a wrapper do (Yo! PSG in the house!)? It does the layout, boilerplate code, creates
and manages the GUI Widgets for you and presents you with a simple, efficient interface.
Most importantly, it maps the Widgets in tkinter/Qt/Wx/Remi into PySimpleGUI Elements.
Finally, it replaces the GUIs' event loop with one of our own.

You've seen examples of the code already. The big deal of all this is that anyone can create a
GUI simply and quickly that matches GUIs written in the native GUI framework. You can create
complex layouts with complex element interactions. And, that code you wrote to run on tkinter
will also run on Qt by changing your import statement.

If you want a deeper explanation about the architecture of PySimpleGUI, you'll find it on
ReadTheDocs in the same document as the Readme & Cookbook. There is a tab at the top with
labels for each document.

The "Ports"
There are distinct ports happening as mentioned above. Each have their own location on
GitHub under the main project. They have their own Readme with is an augmentation of this
document... they are meant to be used together.

PySimpleGUI is released on PyPI as 5 distinct packages. 1. PySimpleGUI - tkinter version 2.
PySimpleGUI27 - tkinter version that runs on 2.7 3. PySimpleGUIWx - WxPython version 4.
PySimpleGUIQt - PySided2 version 5. PySimpleGUIWeb - The web (Remi) version

You will need to install them separately

There is also an accompanying debugger known as imwatchingyou . If you are running the
tkinter version of PySimpleGUI, you will not need to install the debugger as there is a version
embedded directly into PySimpleGUI.

Qt Version
Qt was the second port after tkinter. It is the 2nd most complete with the original PySimpleGUI
(tkinter) being the most complete and is likely to continue to be the front-runner. All of the
Elements are available on PySimpleGUIQt.

12/511

https://pysimplegui.readthedocs.io/en/latest/architecture/

As mentioned previously each port has an area. For Qt, you can learn more on the
PySimpleGUIQt GitHub site. There is a separate Readme file for the Qt version that you'll
find there. This is true for all of the PySimpleGUI ports.

Give it a shot if you're looking for something a bit more "modern". PySimpleGUIQt is currently
in Alpha. All of the widgets are operational but some may not yet be full-featured. If one is missing
and your project needs it, log an Issue. It's how new features are born.

Here is a summary of the Qt Elements with no real effort spent on design clearly. It's an
example of the "test harness" that is a part of each port. If you run the PySimpleGUI.py file
itself then you'll see one of these tests.

As you can see, you've got a full array of GUI Elements to work with. All the standard ones are
there in a single window. So don't be fooled into thinking PySimpleGUIQt is barely working or
doesn't have many widgets to choose from. You even get TWO "Bonus Elements" - Dial and
Stretch

WxPython Version
PySimpleGUIWx GitHub site. There is a separate Readme file for the WxPython version .

Started in late December 2018 PySimpleGUIWx started with the SystemTray Icon feature. This
enabled the package to have one fully functioning feature that can be used along with tkinter
to provide a complete program. The System Tray feature is complete and working very well. It
was used not long ago in a corporate setting and has been performing with few problems
reported.

The Windowing code was coming together with Reads operational. The elements were getting
completed on a regular basis. But I ran into multiwindow problems. And it was at about this
time that Remi was suggested as a port.

Remi (the "web port") overnight lept the WxPython effort and Web became a #1 priority and
continues to be. The thought is that the desktop was well represented with PySimpleGUI,
PySimpleGUIQt, and PySimpleGUIWx. Between those ports is a solid winowing system and 2
system tray implementations and a nearly feature complete Qt effort. So, the team was
switched over to PySimpleGUIWeb.

Web Version (Remi)
PySimpleGUIWeb GitHub site. There is a separate Readme file for the Web version.

New for 2019, PySimpleGUIWeb. This is an exciting development! PySimpleGUI in your Web
Browser!

13/511

https://github.com/MikeTheWatchGuy/PySimpleGUI/tree/master/PySimpleGUIQt
https://github.com/PySimpleGUI/PySimpleGUI/tree/master/PySimpleGUIWx
https://github.com/PySimpleGUI/PySimpleGUI/tree/master/PySimpleGUIWeb

The underlying framework supplying the web capability is the Python package Remi.
https://github.com/dddomodossola/remi Remi provides the widgets as well as a web server
for you to connect to. It's an exiting new platform to be running on and has temporarily
bumped the WxPython port from the highest priority. PySimpleGUIWeb is the current high
priority project.

Use this solution for your Pi projects that don't have anything connected in terms of input
devices or display. Run your Pi in "headless" mode and then access it via the Web interface.
This allows you to easily access and make changes to your Pi without having to hook up
anything to it.

It's not meant to "serve up web pages"

PySimpleGUIWeb is first and foremost a GUI, a program's front-end. It is designed to have a
single user connect and interact with the GUI.

If more than 1 person connects at a time, then both users will see the exact same stuff and will
be interacting with the program as if a single user was using it.

Source code compatibility
In theory, your source code is completely portable from one platform to another by simply
changing the import statement. That's the GOAL and suprisingly many times this 1-line change
works. Seeing your code run on tkinter, then change the import to import PySimpleGUIWeb as
sg and instead of a tkinter window, up pops your default browser with your window running
on it is an incredible feeling.

But, caution is advised. As you've read already, some ports are further along than others. That
means when you move from one port to another, some features may not work. There also
may be some alignment tweaks if you have an application that precisely aligns Elements.

What does this mean, assuming it works? It means it takes a trivial amount of effort to move
across GUI Frameworks. Don't like the way your GUI looks on tkinter? No problem, change
over to try PySimpleGUIQt. Made a nice desktop app but want to bring it to the web too?
Again, no problem, use PySimpleGUIWeb.

repl.it Version
Want to really get your mind blown? Check out this PySimpleGUI program running in your
web browser.

Thanks to the magic of repl.it and Remi it's possible to run PySimpleGUI code in a browser
window without having Python running on your computer. This should be viewed as a teaching
and demonstration aid. It is not meant to be a way of serving up web pages. It wouldn't work

14/511

https://repl.it/@PySimpleGUI/PySimpleGUIWeb-Demos

any way as each user forks and gets their own, completely different, workspace.

There are 2 ports of PySimpleGUI that run on repl.it - PySimpleGUI and PySimpleGUIWeb.

PySimpleGUI (tkinter based)

The primary PySimpleGUI port works very well on repl.it due to the fact they've done an
outstanding job getting tkinter to run on these virtual machines. Creating a program from
scratch, you will want to choose the "Python with tkinter" project type.

The virtual screen size for the rendered windows isn't very large, so be mindful of your
window's size or else you may end up with buttons you can't get to.

You may have to "install" the PySimpleGUI package for your project. If it doesn't automatically
install it for you, then click on the cube along the left edge of the browser window and then
type in PySimpleGUI or PySimpleGUIWeb depending on which you're using.

PySimpleGUIWeb (Remi based)

For PySimpleGUIWeb programs you run using repl.it will automatically download and install
the latest PySimpleGUIWeb from PyPI onto a virtual Python environment. All that is required is
to type import PySimpleGUIWeb you'll have a Python environment up and running with the
latest PyPI release of PySimpleGUIWeb.

Creating a repl.it project from scratch / troubleshooting

To create your own repl.it PySimpleGUI project from scratch, first choose the type of Python
virtual machine you want. For PySimpleGUI programs, choose the "Python with tkinter" project
type. For PySimpleGUIWeb, choose the normal Python project.

There have been times where repl.it didn't do the auto import thing. If that doesn't work for
some reason, you can install packages by clicking on the package button on the left side of the
interface, typing in the package name (PySimpleGUI or PySimpleGUIWeb) and install it.

Why this is so cool (listen up Teachers, tutorial writers)

Educators in particular should be interested. Students can not only post their homework easily
for their teacher to access, but teachers can also run the students programs online. No
downloading needed. Run it and check the results.

For people wanting to share their code, especially when helping someone with a problem, it's a
great place to do it. Those wishing to see your work do not have to be running Python nor have
PySimpleGUI installed.

15/511

The way I use it is to first write my PySimpleGUI code on Windows, then copy and paste it into
Repl.it.

Finally, you can embed these Repl.it windows into web pages, forum posts, etc. The "Share"
button is capable of giving you the block of code for an "iframe" that will render into a working
repl.it program in your page. It's amazing to see, but it can be slow to load.

Repl.it is NOT a web server for you to "deploy" applications!

Repl.it is not meant to serve up applications and web pages. Trying to use it that way will not
ressult in satisfactory results. It's simply too slow and too technical of an interface for trying to
"deploy" using it. PySimpleGUIWeb isn't a great choice in serving web pages. It's purpose is
more to build a GUI that runs in a browser.

Macs
It's surprising that Python GUI code is completely cross platform from Windows to Mac to
Linux. No source code changes. This is true for both PySimpleGUI and PySimpleGUIQt.

However, Macs suck. They suck on tkinter in particular. The "Look and feel" calls are disabled
for Macs. Colored buttons in particular are broken. And, you are unable to specify filetypes
when using the FileBrowse button. None of this is PySimpleGUI code issues, of course, they're
all in tkinter. Consider using Qt instead of tkinter on the Mac. Or, if using tkinter, create your
own button images.

Look through the open and closed issues if you're a Mac person with a problem. It's highly
likely the problem has been at least seen previously and there may even be a fix or
workaround

Switching to "Light Mode" is known to fix some of the problems. They honestly are tkinter/Mac
problems.

Make sure you're running tkinter 8.6 and up. However, as I'm learning 8.6 can mean almost
anything as the minor release numbers are not provided (8.6.1, etc). Turns out 8.6 has been in
development for YEARS. The 8.6 that comes with Python 3.7.4 doesn't support table colors for
example even though it's version 8.6.

Support

Don't Suffer Silently

16/511

The GitHub Issues are checked often. Very often. Please post your questions and problems
there and there only. Please don't post on Reddit, Stackoverflow, on forums, until you've tried
posting on the GitHub.

Why? It will get you the best support possible. Second, you'll be helping the project as what
you're experiencing might very well be a bug, or even a known bug. Why spend hours
thrashing, fighting against a known bug?

It's not a super-buggy package, but users do experience problems just the same. Maybe
something's not explained well enough in the docs. Maybe you're making a common mistake.
Maybe that feature isn't complete yet.

You won't look stupid posting an Issue on GitHub. It's just the opposite.

How to log issues

PySimpleGUI is an active project. Bugs are fixed, features are added, often. Should you run
into trouble, open an issue on the GitHub site and you'll receive help. Posting questions on
StackOverflow, Forums, Mailing lists, Reddit, etc, is not the fastest path to support and taking it
may very well lead you astray as folks not familiar with the package struggle to help you. You
may also run into the common response of "I don't know PySimpleGUI (and perhaps dislike it
as a result), but I know you can do that with Qt".

Why only 1 location? It's simple.... it's where the bugs, enhancements, etc are tracked. It's THE
spot on the Internet for this project. It's not some freakish being in control, telling people how
to do things. It's so that YOU get the best and quickest support possible.

So, open an Issue, choose "custom form" and fill it out completely. There are very good
reasons behind all of the questions. Cutting corners only cuts your chances of getting help and
getting quality help as it's difficult enough to debug remotely. Don't handicap people that want
to help by not providing enough information.

Be sure and run your program outside of your IDE first. Start your program from the shell
using python or python3 command. On numerous occassions much time was spent chasing
problems caused by the IDE. By running from a command line, you take that whole question
out of the problem, an important step.

Don't sit and stew, trying the same thing over and over , until you hate life... stop, and post an
Issue on the GitHub. Someone WILL answer you. Support is included in the purchase price for
this package (the quality level matches the price as well I'm afraid). Just don't be too upset
when your free support turns out to be a little bit crappy, but it's free and typically good advice.

PySimpleGUI Trolls

17/511

http://www.pysimplegui.com/
https://github.com/PySimpleGUI/PySimpleGUI/issues/new/choose

Yea, they're out there. Would have NEVER in a billion years guessed that there would be
objection to this package, coming from a small, but vocal, number of people. I naively believed
everyone would be supportive, see the value, hold hands around the fire, sing songs, and in
the very least be truthful. But, this ain't Kansas and the Internet is well...

If someone is actively discouraging you from using this package, then know you are on the
right track and you should give it a try. Stuff like this sometimes happens because the person
works for a particular company or they have a GUI package of their own.... that's not popuplar,
or they like to tear things down or I dunno... people can be really weird and emotional.

I promise you're not going to be wrecked for life. It will not cause you to be a bad programmer
with bad habits. It will not ruin your career. It's not going to teach you bad habits. One person I
know got a bonus based on a PySimpleGUI program he wrote.

How about success being the goal? Spend time polishing your GUI and working on your
primary code instead of struggling your way through the mountains of documentation in the
Qt library, trying to set the color of something. How about getting your program done,
working, and in use?

Start with PySimpleGUI, then in the future if you want to code directly in Qt, it's not like you
won't be able to learn something else due to your PySimpleGUI knowledge. Unable to write a
while loop because you already learned using a for loop? That seems to be the logic.

If anything, you'll have more knowledge than most people that are just starting because you'll
have already built working GUIs, perhaps many of them and understand how to layout an
efficient interface as well as having a good education in GUI Widgets and how they work.

Here are the forces likely at work.... said Troll has been programming for a while now and
really knows these GUI frameworks. Probably invested a lot of hours learning them and thus
has some marketable skills (yes, follow the money).

Enter snotty-nosed high-shool or first year programmer using PySimpleGUI that manages to
make GUI windows with great ease... that look, well, pretty much the same as the windows Sir
Troll was used to getting paid big bucks to make. What used to be a skill only a select few can
do, now 1,000's, 10,000's, or 100,000s more programmers can do, quicker and easier. Bummer
Mr. Troll. Bummer.

"It's supposed to be difficult to write a GUI" was an actual reason listed why not to use
PySimpleGUI by one person offering to help junior programmers learn Qt. Really? It's
supposed to be difficult. Huh. Well, not in this Python universe. Maybe in C++ world it works
that way??

Just know you're safe in trying and possibly even succeeding in the process.

Target Audience
18/511

PySimpleGUI is trying to serve the 80% of GUI problems. The other 20% go straight to tkinter,
Qt, WxPython, Remi, or whatever fills that need. That 80% is a huge problem space.

The "Simple" of PySimpleGUI describes how easy it is to use, not the nature of the problem
space it solves. Note that people are not part of that description. It's not trying to solve GUI
problems for 80% of the people trying it. PySimpleGUI tries to solve 80% of GUI problems,
regardless of the programmer's experience level.

Is file I/O in Python limited to only certain people? Is starting a thread, building a multi-
threaded Python program incredibly difficult such that it takes a year to learn? No. It's quite
easy. Like most things Python, you import the object from package and you use it. It is 2 lines
of Python code to create and start a thread.

Why can't it be 2 lines of code to show a GUI window? What's SO special about the Python GUI
libraries that they require you to follow a specific Object Oriented model of development?
Other parts and packages of Python don't tend to do that.

The reason is because they didn't originate in Python. They are strangers in a strange land and
they had to be "adapted". They started as C++ programs / SDKs, and remain that way too.
There's a vaneer of Python slapped onto the top of them, but that sure didn't make them fit
the language as well as they could have.

PySimpleGUI is designed with both the beginner and the experienceed developer in mind.
Why? Because both tend to like compact code. Most like people, we just want to get sh*t done,
right? And, why not do it in a way that's like how most of Python works?

The beginners can begin working with GUIs in their first week of Python education. The
professionals can jump right into the deep end of the pool to use the entire array of Elements
and their capabilities to build stuff like a database application.

Here's a good example of how PySimpleGUI serves these 2 groups.... the InputText Element
has 16 potential parameters, yet you'll find 0 or 1 parameters set by beginners. Look at the
examples throughout this document and you'll see the code fragments utilize a tiny fraction of
the potential parameters / settings. Simple... keep it simple for the default case . This is part
of the PySimpleGUI mission.

Some developers are heavily wedded to the existing GUI Framework Architectures (Qt,
WxPyton, tkinter). They like the existing GUI architectures (they're all roughly the same, except
this one). If you're in that crowd, join the "20% Club" just down the street. There's plenty of
room there with plenty of possible solutions.

But how about a quick stop-in for some open mindedness exercises. Maybe you will come up
with an interesting suggestion even if you don't use it. Or maybe PySimpleGUI does something
that inspires you to write something similar directly in Qt. And please, at least be civil about it.

19/511

There is room for multiple architectures. Remember, you will not be harmed by writing some
PySimpleGUI code just like you won't by writing some tkinter or Qt code. Your chances of
feeling harmed is more likely from one of those 2.

Beginners & Easier Programs

There are a couple of reasons beginners stop in for a look. The first is to simply throw a simple
GUI onto the front of an existing command line application. Or maybe you need to popup a
box to get a filename. These can often be simple 1-line Popup calls. Of course, you don't have
to be a beginner to add a GUI onto one of your existing command line programs. Don't feel
like because you're an advanced programmer, you need to have an advanced solution.

If you have a more intricate, complete, perhaps multi-window design in mind, then
PySimpleGUI still could be your best choice.

This package is not only great to use as your first GUI package, but it also teaches how to
design and utilize a GUI. It does it better than the existing GUIs by removing the syntax, and
lengthy code that can take an otherwise very simple appearing program into something that's
completely unrecognizable. With PySimpleGUI your 'layout' is all you need to examine to see
the different GUI Elements that are being used.

Why does PySimpleGUI make it any easier to learn about GUIs? Because it removes the
classes, callback functions, object oriented design to better get out of your way and let you
focus entirely on your GUI and not how to represent it in code.

The result is 1/2 to 1/10 th the amount of code that implements the exact same layout and
widgets as you would get from coding yourself directly in Qt5. It's been tested many times...
again and again, PySimpleGUI produces significantly less code than Qt and the frameworks it
runs on.

Forget syntax completely and just look on the overall activities of a PySimpleGUI programmer.
You have to design your window.... determine your inputs and your outputs, place buttons in
strategic places, create menus, You'll be busy just doing all those things to design and
define your GUI completely independent upon the underlying framework.

After you get all those design things done and are ready to build your GUI, it's then that you
face the task of learning a GUI SDK. Why not start with the easy one that gives you many
successes? You're JUST getting started, so cut yourself a break and use PySimpleGUI so that
you can quickly get the job done and move on to the next GUI challenge.

Advanced Programmers, Sharp Old-Timers, Code Slingers and Code Jockeys

It's not perfect, but PySimpleGUI is an amazing bit of technology. It's the programmer, the
computer scientist, that has experience working with GUIs in the past that will recognize the
power of this simple architecture.

20/511

What I hear from seasoned professionals is that PySimpleGUI saves them a ton of time.
They've written GUI code before. They know how to lay out a window. These folks just want to
get their window working and quick.

With the help of IDE's like PyCharm, Visual Studio and Wing (the offically supported IDE list)
you get instant documentation on the calls you are making. On PyCharm you instantly see
both the call signature but also the explanations about each parameter.

If the screenshots, demo programs and documentation don't convince you to at least give it a
try, once, then you're way too busy, or I dunno, I stopped guessing "why?" some time ago.

Some of the most reluctant of people to try PySimpleGUI have turned out to be some of the
biggest supporters.

A Moment of Thanks To The PySimpleGUI Users

I want to thank the early users of PySimpleGUI that started in 2018. Your suggestions helped
shape the package and have kept it moving forward at a fast pace.

For all the users, while I can't tell you the count of the number of times someone has said
"thank you for PySimpleGUI" as part of logging and Issue, or a private message or email, but I
can tell you that it's been significant.

EVERY one of those "thank you" phrases, no matter how small you may think it is, helps
tremendously.

Sometimes it's what gets me past a problem or gets me to write yet more documentation to
try and help people understand quicker and better. Let's just say the effect is always positive
and often significant.

PySimpleGUI users have been super-nice. I doubt all Open Source Projects are this way, but I
could be wrong and every GitHub repository has awesome users. If so, that's even more
awesome!

THANK YOU PySimpleGUI USERS!

Learning Resources
This document.... you must be willing to read this document if you expect to learn and use
PySimpleGUI.

If you're unwilling to even try to figure out how to do something or find a solution to a problem
and have determined it's "easier to post a question first than to look at the docs", then this is
not the GUI package for you. If you're unwilling to help yourself, then don't expect someone else to

21/511

try first. You need to hold up your end of the bargain by at least doing some searches of this
document.

While PySimpleGUI enables you to write code easily, it doesn't mean that it magically fills your
head with knowledge on how to use it. The built-in docstrings help, but they can only go so far.

Searching this document is as easy as pressing Control + F.

This document is on the GitHub homepage, as the readme. http://www.PySimpleGUI.com will
get you there. If you prefer a version with a Table of Contents on the left edge then you want
to go to http://www.PySimpleGUI.org .

The PySimpleGUI, Developer-Centric Model
You may think that you're being fed a line about all these claims that PySimpleGUI is built
specifically to make your life easier and a lot more fun than the alternatives.... especially after
reading the bit above about reading this manual.

Psychological Warfare

Brainwashed. Know that there is an active campaign to get you to be successful using
PySimpleGUI. The "Hook" to draw you in and keep you working on your program until you're
satisfied is to work on the dopamine in your brain. Yes, your a PySimpleGUI rat, pressing on
that bar that drops a food pellet reward in the form of a working program.

The way this works is to give you success after success, with very short intervals between. For
this to work, what you're doing must work. The code you run must work. Make small changes
to your program and run it over and over and over instead of trying to do one big massive set
of changes. Turn one knob at a time and you'll be fine.

Find the keyboard shortcut for your IDE to run the currently shown program so that running
the code requires 1 keystroke. On PyCharm, the key to run what you see is Control + Shift +
F10. That's a lot to hold down at once. I programmed a hotkey on my keyboard so that it emits
that combination of keys when I press it. Result is a single button to run.

Tools

These tools were created to help you achieve a steady stream of these little successses.

This readme and its example pieces of code
The Cookbook - Copy, paste, run, success
Demo Programs - Copy these small programs to give yourself an instant headstart
Documentation shown in your IDE (docstrings) means you do not need to open any
document to get the full assortment of options available to you for each Element &
function call

22/511

The initial "get up and running" portion of PySimpleGUI should take you less than 5 minutes.
The goal is 5 minutes from your decision "I'll give it a try" to having your first window up on the
screen "Oh wow, it was that easy?!"

The primary learning pathes for PySimpleGUI are:

This readme document over 100 pages of PySimpleGUI User Manual
http://www.PySimpleGUI.org

The Cookbook - Recipes to get you going and quick
http://Cookbook.PySimpleGUI.org

The Demo Programs - Start hacking on one of these running soluitions
http://www.PySimpleGUI.com

Everything is geared towards giving you a "quick start" whether that be a Recipe or a Demo
Program. The idea is to give you something running and let you hack away at it. As a
developer this saves tremendous amounts of time.

You start with a working program, a GUI on the screen. Then have at it. If you break
something ("a happy little accident" as Bob Ross put it), then you can always backtrack a little
to a known working point.

A high percentage of users report both learning PySimpleGUI and completing their project in a
single day.

This isn't a rare event and it's not bragging. GUI programming doesn't HAVE to be difficult by
definition and PySimpleGUI has certainly made it much much more approachable and easier
(not to mention simpler).

But, you need to look at this document when pushing into new, unknown territory. Don't
guess... or more specifically, don't guess and then give up when it doesn't work.

This Readme and Cookbook
The readme and Cookbook, etc are best viewed on ReadTheDocs. The quickest way there is to
visit: http://www.PySimpleGUI.org

You will be auto-forwarded to the right destination. There are multiple tabs on ReadTheDocs.
One for the main readme and one for the Cookbook. There are other documents there like an
architectural design doc.

The Cookbook has approx 27 "Recipes" or short programs that can be easily copied and
pasted.

Demo Programs

23/511

The GitHub repo has the Demo Programs. There are ones built for plain PySimpleGUI that are
usually portrable to other versions of PySimpleGUI. And there are some that are associated
with one of the other ports. The easiest way to the GitHub:

http://www.PySimpleGUI.com

As of this writing, on 2019-07-10 there are 177 Demo Programs for you to choose from.

These programs demonstrate to you how to use the Elements and especially how to integtate
PySimpleGUI with some of the popular open source technologies such as OpenCV, PyGame,
PyPlot, and Matplotlib to name a few.

Many Demo Programs that are in the main folder will run on multiple ports of PySimpleGUI.
There are alse port-specific Demo Programs. You'll find those in the folder with the port. So,
Qt specific Demo Programs are in the PySimpleGUIQt folder.

The Quick Tour
Let's take a super-brief tour around PySimpleGUI before digging into the details. There are 2
levels of windowing support in PySimpleGUI - High Level and Customized.

The high-level calls are those that perform a lot of work for you. These are not custom made
windows (those are the other way of interacting with PySimpleGUI).

Let's use one of these high level calls, the Popup and use it to create our first window, the
obligatory "Hello World". It's a single line of code. You can use these calls like print statements,
adding as many parameters and types as you desire.

import PySimpleGUI as sg

sg.Popup('Hello From PySimpleGUI!', 'This is the shortest GUI program ever!')

Or how about a custom GUI in 1 line of code? No
kidding this is a valid program and it uses Elements
and produce the same Widgets like you normally
would in a tkinter program. It's just been
compacted together is all, strictly for demonstration
purposes as there's no need to go that extreme in
compactness, unless you have a reason to and then
you can be thankful it's possible to do.

import PySimpleGUI as sg

event, values = sg.Window('Get filename example', [[sg.Text('Filename')], [sg.Input(), sg.FileBrowse()],
[sg.OK(), sg.Cancel()]]).Read()

24/511

The Beauty of Simplicity

One day I will find the right words, and they will be simple. ― Jack Kerouac

That's nice that you can crunch things into 1 line, like in the above example, but it's not
readable. Let's add some whitespace so you can see the beauty of the PySimpleGUI code.

Take a moment and look at the code below. Can you "see" the window looking at the layout
variable, knowing that each line of code represents a single row of Elements? There are 3
"rows" of Elements shown in the window and there are 3 lines of code that define it.

Creating and reading the user's inputs for the window occupy the last 2 lines of code, one to
create the window, the last line shows the window to the user and gets the input values (what
button they clicked, what was input in the Input Element)

import PySimpleGUI as sg

layout = [[sg.Text('Filename')],
 [sg.Input(), sg.FileBrowse()],
 [sg.OK(), sg.Cancel()]]

window = sg.Window('Get filename example', layout)

event, values = window.Read()

Unlike other GUI SDKs, you can likely understand every line of code you just read, even though
you have not yet read a single instructional line from this document about how you write
Elements in a layout.

There are no pesky classes you are required to write, no callback functions to worry about.
None of that is required to show a window with some text, an input area and 2 buttons using
PySimpleGUI.

25/511

The same code, in tktinter, is 5 times longer and I'm guessing you won't be able to just read it
and understand it. While you were reading through the code, did you notice there are no
comments, yet you still were able to understand, using intuition alone.

You will find this theme of Simple everywhere in and around PySimpleGUI. It's a way of
thinking as well as an architecture direction. Remember, you, Mr./Ms. Developer, are at the
center of the package. So, from your vantage point, of course everything should look and feel
simple.

Not only that, it's the Pythonic thing to do. Have a look at line 3 of the "Zen of Python".

The Zen of Python, by Tim Peters

Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex.
Complex is better than complicated. Flat is better than nested. Sparse is better than dense.
Readability counts. Special cases aren't special enough to break the rules. Although practicality
beats purity. Errors should never pass silently. Unless explicitly silenced. In the face of
ambiguity, refuse the temptation to guess. There should be one-- and preferably only one --
obvious way to do it. Although that way may not be obvious at first unless you're Dutch. Now is
better than never. Although never is often better than right now. If the implementation is hard to
explain, it's a bad idea. If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

I just hope reading all these pages of documentation is going to make you believe that we're
breaking suggestion:

If the implementation is hard to explain, it's a bad idea. If the implementation is easy to explain,
it may be a good idea.

I don't think PySimpleGUI is difficult to explain, but I am striving to fully explain it so that you
don't do this:

In the face of ambiguity, refuse the temptation to guess.

Sometimes you can guess and be fine. Other times, things may work, but the side effects are
potentially significant. There may be a much better way to solve a problem - Log an Issue on
GitHub!

Some Examples

Polishing Your Windows = Building "Beautiful Windows"
26/511

And STILL the Zen of Python fits:

Beautiful is better than ugly.

but this fits too:

Although practicality beats purity.

Find a balance that works for you.

"But tkinter sucks" "It looks like the 1990s" (this one is often said by people that were not alive
in the 1990s) "What Python GUI SDK will make my window look beautiful?" (posted to Reddit at
least every 2 weeks)

These windows below were ALL made using PySimpleGUI, the tkinter version and they look
good enough to not be simply scoffed at and dismissed. Remember, developer, you have a
rather significant hand in how your application looks and operates. You certainly cannot pin it
all on the GUIs you're using.

So many posts on Reddit asking which GUI is going to result in a "beautiful window", as if
there's a magic GUI library that pretties things up for you. There are some calls in PySimpleGUI
that will help you. For example, you can make a single call to "Chang the look and feel" which
loads predefined color pallets so your windows can have some instant color and it matches.

Beautiful windows are created, not simply given to you. There are people that design and
create artwork for user interfaces, you know that right? Artists draw buttons, artwork that you
include in the window to make it nicer.

Some of these have been "polished", others like the Matplotlib example is more a functional
example to show you it works.

27/511

28/511

This chess program is capable of running multiple AI chess engines and was written by
another user using PySimpleGUI.

29/511

This downloader can download files as well as YouTube videos and metadata. If you're worried
about multiple windows working, don't. Worried your project is "too much" or "too complex"
for PySimpleGUI? Do an initial assessment if you want. Check out what others have done.

Your program have 2 or 3 windows and you're concerned? Below you'll see 11 windows open,
each running independently with multiple tabs per window and progress meters that are all
being updated concurrently.

30/511

Make beautiful looking, alpha-blended (partially transparent) Rainmeter-style Desktop Widgets
that run in the background.

31/511

Want to build a Crossword Puzzle? No problem, the drawing primitives are there for you.

32/511

There are built-in drawing primitives

33/511

Frame from integration with a YOLO Machine Learning program that does object identification
in realtime while allowing the user to adjust the algorithms settings using the sliders under the
image. This level of interactivity with an AI algorithm is still unusual to find due to difficulty of
merging the technologies of AI and GUI. It's no longer difficult. This program is under 200 lines
of code.

34/511

Pi Windows
Perhaps you're looking for a way to interact with your Raspberry Pi in a more friendly way.
Your PySimpleGUI code will run on a Pi with no problem. Tkinter is alive and well on the Pi
platform. Here is a selection of some of the Elements shown on the Pi. You get the same
Elements on the Pi as you do Windows and Linux.

35/511

You can add custom artwork to make it look nice, like the Demo Program - Weather Forecast
shown in this image:

36/511

One thing to be aware of with Pi Windows, you cannot make them semi-transparent. This
means that the Window.Disappear method will not work. Your window will not disappear.
Setting the Alpha Channel will have no effect.

37/511

Don't forget that you can use custom artwork anywhere, including on the Pi. The weather
application looks beautiful on the Pi. Notice there are no buttons or any of the normal looking
Elements visible. It's possible to build nice looking applications, even on the lower-end
platforms.

Games
It's possible to create some cool games by simply using the built-in PySimpleGUI graphic
primivites like those used in this game of pong. PyGame can also be embedded into a
PySimpleGUI window and code is provided to you demonstrating how. There is also a
demonstration of using the pymunk physics package that can also be used for games.

Games haven't not been explored much, yet, using PySimpleGUI.

Windows Programs That Look Like Windows Programs
Do you have the desire to share your code with other people in your department, or with
friends and family? Many of them may not have Python on their computer. And in the
corporate environment, it may not be possible for you to install Python on their computer.

PySimpleGUI + PyInstaller to the rescue!!

38/511

Combining PySimpleGUI with PyInstaller creates something truly remarkable and special, a
Python program that looks like a Windows WinForms application.

The application you see below with a working menu was created in 20 lines of Python code. It
is a single .EXE file that launches straight into the screen you see. And more good news, the
only icon you see on the taskbar is the window itself... there is no pesky shell window. Nice,
huh?

With a simple GUI, it becomes practical to "associate" .py files with the python interpreter on
Windows. Double click a py file and up pops a GUI window, a more pleasant experience than
opening a dos Window and typing a command line.

There is even a PySimpleGUI program that will take your PySimpleGUI program and turn it into
an EXE. It's nice because you can use a GUI to select your file and all of the output is shown in
the program's window, in realtime.

Background - Why PySimpleGUI Came to Be
Feel free to skip all this if you don't care to know the backstory and reasons behind decisions.

There was a project looming and a GUI was needed. It wasn't a very complex GUI so thus
began a search for a simplified GUI package that would enable me to work with tkinter easier. I
found a few, and they were pretty popular too, but they lacked the full-compliment of Widgets

39/511

and it was impossible to define my own window using those widgets.

A whacky idea came to mind... what if I wrote a simplified GUI and then used THAT to write my
application. It would be a lot less code and it would be "easy" to write my application then. And
that is exactly what was done.

First an early version of PySimpleGUI was written that had a subset of the Elements avaiable
today. It had just enough for my application. Then I wrote my application in PySimpleGUI.

Thus PySimpleGUI was born out of necessity and it's been the necessity of others that have
helped evolve it into the package it is today. It would not be 1/2 as good without the help of the
community.

Once PySimpleGUI was done, it was time to start working on "the ports". And, of course, also
this documentation.

The Non-OO and Non-Event-Driven Model
The two "advanced concepts" that beginning Python students have with GUIs are the use of
classes and callbacks with their associated communication and coordination mechanisms
(semaphores, queues, etc)

How do you make a GUI interface easy enough for first WEEK Python students?

This meant classes could be used to build and use it, but classes can not be part of the code
the user writes. Of course, an OO design is quite possible to use with PySimpleGUI, but it's not
a requirement. The sample code and docs stay away from writing new classes in the user
space for the most part.

What about those pesky callbacks? They're difficult for beginners to grasp and they're a bit of a
pain in the ass to deal with. The way PySimpleGUI got around events was to utilize a "message
passing" architecture instead.

Instead of a user function being called when there's some event, instead the information is
"passed" to the user when they call the function Window.Read()

Everything is returned through this Window.Read call. Of course the underlying GUI
frameworks still perform callbacks, but they all happen inside of PySimpleGUI where they are
turned into messages to pass to you.

All of the boilerplate code, the event handling, widget creation, frames containing widgets, etc,
are exactly the same objects and calls that you would be writing if you wrote directly in
tktiner, Qt, etc. With all of this code out of the way and done for you, that leaves you with the
task of doing something useful with the information the user entered. THAT, afterall, is the
goal here.... getting user information and acting on it.

40/511

The full complement of Widgets are available to you via PySimpleGUI Elements. And those
widgets are presented to you in a unique and fun way.

If you wish to learn more about the Architecture of PySimpleGUI, take a look at the
Architecture document located on ReadTheDocs.

The Result

A GUI that's appealing to a broad audience that is highly customizable, easy to program, and is
solid with few bugs and rarely crashes (99% of the time it's some other error that causes a
crash).

PySimpleGUI is becoming more and more popular. The number of installs and the number of
successes grows daily. Pip installs have exceeded 350,000 in the first year of existance. Over
300 people a day visit the GitHub and the project has 1,800 stars (thank you aweesome users!)

The number of ports is up to 4. The number of integrations with other technologies is
constantly being expanded. It's a great time to try PySimpleGUI! You've got no more than 5 or
10 minutes to lose.

Caution is needed, however, when working with the unfinished ports. PySimpleGUI, the tkinter
version, is the only fully complete port. Qt is next. All of its Elements are completed, but not all
of the options of each element are done. PySimpleGUIWeb is next in order of completness
and then finally PySimpleGUIWx.

Features
While simple to use, PySimpleGUI has significant depth to be explored by more advanced
programmers. The feature set goes way beyond the requirements of a beginner programmer,
and into the required features needed for complex multi-windowed GUIs.

For those of you that have heard PySimpleGUI is only good for doing the most simplest of
GUIs, this feature list should put that myth to rest. The SIMPLE part of PySimpleGUI is how
much effort you expend to write a GUI, not the complexity of the program you are able
to create. It's literally "simple" to do... and it is not limited to simple problems.

Features of PySimpleGUI include:

Support for Python versions 2.7 and 3
Text
Single Line Input

41/511

https://pysimplegui.readthedocs.io/en/latest/architecture/

Buttons including these types:
File Browse
Files Browse
Folder Browse
SaveAs
Normal button that returns event
Close window
Realtime
Calendar chooser
Color chooser
Button Menu

Checkboxes
Radio Buttons
Listbox
Option Menu
Menubar
Button Menu
Slider
Spinner
Dial
Graph
Frame with title
Icons
Multi-line Text Input
Scroll-able Output
Images
Tables
Trees
Progress Bar Async/Non-Blocking Windows
Tabbed windows
Paned windows
Persistent Windows
Multiple Windows - Unlimited number of windows can be open at the same time
Redirect Python Output/Errors to scrolling window
'Higher level' APIs (e.g. MessageBox, YesNobox, ...)
Single-Line-Of-Code Proress Bar & Debug Print
Complete control of colors, look and feel
Selection of pre-defined palettes
Button images
Horizontal and Verticle Separators
Return values as dictionary
Set focus

42/511

Bind return key to buttons
Group widgets into a column and place into window anywhere
Scrollable columns
Keyboard low-level key capture
Mouse scroll-wheel support
Get Listbox values as they are selected
Get slider, spinner, combo as they are changed
Update elements in a live window
Bulk window-fill operation
Save / Load window to/from disk
Borderless (no titlebar) windows (very classy looking)
Always on top windows
Menus with ALT-hotkey
Right click pop-up menu
Tooltips
Clickable text
Transparent windows
Movable windows
Animated GIFs
No async programming required (no callbacks to worry about)
Built-in debugger and REPL
User expandable by accessing underlying GUI Framework widgets directly

Design Goals
With the developer being the focus, the center of it all, it was important to keep this mindset at
all times, including now, today. Why is this such a big deal? Because this package was written
so that the universe of Python applications can grow and can include EVERYONE into the
GUI tent.

Up in 5 minutes

Success #1 has to happen immediately. Installing and then running your first GUI program.
FIVE minutes is the target. The Pip install is under 1 minute. Depending on your IDE and
development environment, running your first piece of code could be a copy, paste, and run.
This isn't a joke target; it's for real serious.

Beginers and Advanted Together

Design an interface that both the complete beginner can understand and use that has enough
depth that an advanced programmer can make some very nice looking GUIs amd not feel like
they're playing with a "toy".

43/511

Success After Success

Success after success.... this is the model that will win developer's hearts. This is what users
love about PySimpleGUI. Make your development progress in a way you can run and test your
code often. Add a little bit, run it, see it on your screen, smile, move on.

Copy, Paste, Run.

The Cookbook and Demo Programs are there to fulfill this goal. First get the user seeing on
their screen a working GUI that's similar in some way to what they want to create.

If you're wanting to play with OpenCV download the OpenCV Demo Programs and give them a
try. Seeing your webcam running in the middle of a GUI window is quite a thrill if you're trying
to integrate with the OpenCV package.

"Poof" instant running OpenCV based application == Happy Developer

Make Simpler Than Expected Interfaces

The Single Line Progress Meter is a good example. It requires one and only 1 line of code.
Printing to a debug window is as easy as replacing print with sg.Print which will route your
console output to a scrolling debug window.

Be Pythonic

Be Pythonic...

This one is difficult for me to define. The code implementing PySimpleGUI isn't PEP8
compliant, but it is consistent. The important thing was what the user saw and experienced
while coding, NOT the choices for naming conventions in the implementation code. The user
interface to PySimpleGUI now has a PEP8 compliant interface. The methods are snake_case
now (in addition to retaining the older CamelCase names)

I ended up defining it as - attempt to use language constructs in a natural way and to exploit
some of Python's interesting features. It's Python's lists and optional parameters make
PySimpleGUI work smoothly.

Here are some Python-friendly aspects to PySimpleGUI:

Windows are represented as Python lists of Elements
Return values are an "event" such a button push and a list/dictionary of input values
The SDK calls collapse down into a single line of Python code that presents a custom GUI
and returns values should you want that extreme of a single-line soluition
Elements are all classes. Users interact with elements using class methods but are not
required to write their own classes

44/511

Allow keys and other identifiers be any format you want. Don't limit user to particular
types needlessly.
While some disagree with the single source file, I find the benefits greatly outweigh the
negatives

Lofty Goals

Teach GUI Programming to Beginners

By and large PySimpleGUI is a "pattern based" SDK. Complete beginners can copy these
standard design patterns or demo programs and modify them without necessarily
understanding all of the nuts and bolts of what's happening. For example, they can modify a
layout by adding elements even though they may not yet grasp the list of lists concept of
layouts.

Beginners certainly can add more if event == 'my button': statements to the event loop that
they copied from the same design pattern. They will not have to write classes to use this
package.

Capture Budding Graphic Designers & Non-Programmers

The hope is that beginners that are interested in graphic design, and are taking a Python
course, will have an easy way to express themselves, right from the start of their Python
experience. Even if they're not the best programmers they will be able express themselves to
show custom GUI layouts, colors and artwork with ease.

Fill the GUI Gap

There is a noticeable gap in the Python GUI solution. Fill that gap and who knows what will
happen. At the moment, to make a tradiional GUI window using tkinter, Qt, WxPython and
Remi, it takes much more than a week, or a month of Python education to use these GUI
packages.

They are out of reach of the beginners. Often WAY out of reach. And yet, time and time again,
beginners that say they JUST STARTED with Python will ask on a Forum or Reddit for a GUI
pacakage recommendation. 9 times out of 10 Qt is recommended. (smacking head with hand).
What a waste of characters. You might as well have just told them, "give up".

Is There a There?

Maybe there's no "there there". Or maybe a simple GUI API will enable Python to dominate yet
another computing discipline like it has so many others. This is one attempt to find out. So far,
it sure looks like there's PLENTY of demand in this area.

45/511

Getting Started with PySimpleGUI
There is a "Troubleshooting" section towards the end of this document should you run into
real trouble. It goes into more detail about what you can do to help yourself.

Installing PySimpleGUI
Of course if you're installing for Qt, WxPython, Web, you'll use PySimpleGUIQt,
PySimpleGUIWx, and PySimpleGUIWeb instead of straight PySimpleGUI in the instructions
below. You should already have the underlying GUI Framework installed and perhaps tested.
This includes tkinter, PySide2, WxPython, Remi

Installing on Python 3

pip install --upgrade PySimpleGUI

On some systems you need to run pip3. (Linux and Mac)

pip3 install --upgrade PySimpleGUI

On a Raspberry Pi, this is should work:

sudo pip3 install --upgrade pysimplegui

Some users have found that upgrading required using an extra flag on the pip --no-cache-dir .

pip install --upgrade --no-cache-dir PySimpleGUI

On some versions of Linux you will need to first install pip. Need the Chicken before you can
get the Egg (get it... Egg?)

sudo apt install python3-pip

tkinter is a requirement for PySimpleGUI (the only requirement). Some OS variants, such as
Ubuntu, do not some with tkinter already installed. If you get an error similar to:

ImportError: No module named tkinter

then you need to install tkinter .

For python 2.7

sudo apt-get install python-tk

For python 3 sudo apt-get install python3-tk

46/511

More information about installing tkinter can be found here:
https://www.techinfected.net/2015/09/how-to-install-and-use-tkinter-in-ubuntu-debian-linux-
mint.html

Installing for Python 2.7

pip install --upgrade PySimpleGUI27 or pip2 install --upgrade PySimpleGUI27

You may need to also install "future" for version 2.7

pip install future or pip2 install future

Python 2.7 support is relatively new and the bugs are still being worked out. I'm unsure what
may need to be done to install tkinter for Python 2.7. Will update this readme when more info
is available

Like above, you may have to install either pip or tkinter. To do this on Python 2.7:

sudo apt install python-pip

sudo apt install python-tkinter

Testing your installation and Troubleshooting

Once you have installed, or copied the .py file to your app folder, you can test the installation
using python. At the command prompt start up Python.

The Quick Test

From your commant line type: python -m PySimpleGUI

Of course if you're on Linux/Mac and need to run using the command python3 then of
course type that.

This will display the same window as these instructions:

Instructions for Testing Python 2.7:

>>> import PySimpleGUI27
>>> PySimpleGUI27.main()

Instructions for Testing Python 3:

>>> import PySimpleGUI
>>> PySimpleGUI.main()

47/511

You will see a "test harness" that exercises the SDK, tells you the version number, allows you
to try

Finding Out Where Your PySimpleGUI Is Coming From

It's critical for you to be certain where your code is coming from and which version you're
running.

Sometimes when debugging, questions arise as to exactly which PySimpleGUI you are running.
The quick way to find this out is to again, run Python from the command line. This time you'll
type:

>>> import PySimpleGUI as sg
>>> sg

When you type sg, Python will tell you the full patch to your PySimpleGUI file / package. This is
critical information to know when debugging because it's really easy to forget you've got an old
copy of PySimpleGUI laying around somewhere.

Finding Out Where Your PySimpleGUI Is Coming From (from within
your code)

If you continue to have troubles with getting the right version of PySimpleGUI loaded, THE
definitive way to determine where your program is getting PySimpleGUI from is to add a print
to your program. It's that simple! You can also get the version you are running by also printing

import PySimpleGUI as sg

print(sg)
print(sg.version)

Just like when using the REPL >>> to determine the location, this print in your code will
display the same path information.

Manual installation

If you're not connected to the net on your target machine, or pip isn't working, or you want to
run the latest code from GitHub, then all you have to do is place the single PySimpleGUI
source file PySimpleGUI.py (for tkinter port) and place it in your application's folder (the folder
where the py file is that imports PySimpleGUI). Your application will load that local copy of
PySimpleGUI as if it were a package.

Be sure that you delete this PySimpleGUI.py file if you install a newer pip version. Often the
sequence of events is that a bug you've reported was fixed and checked into GitHub. You
download the PySimpleGUI.py file (or the appropriately named one for your port) and put with

48/511

your app. Then later your fix is posted with a new release on PyPI. You'll want to delete the
GitHub one before you install from pip.

Prerequisites

Python 2.7 or Python 3 tkinter

PySimpleGUI Runs on all Python3 platforms that have tkinter running on them. It has been
tested on Windows, Mac, Linux, Raspberry Pi. Even runs on pypy3 .

EXE file creation

If you wish to create an EXE from your PySimpleGUI application, you will need to install
PyInstaller . There are instructions on how to create an EXE at the bottom of this document.

IDEs
A lot of people ask about IDEs, and many outright fear PyCharm. Listen up.... compared to
your journey of learning Python, learning to use PyCharm as your IDE is NOTHING. It's a DAY
typically (from 1 to 8 hours). Or, if you're really really new, perhaps as much as a week to get
used to. So, we're not talking about you needing to learn to flap your arms and fly.

To sum up that paragraph, stop whining like a little b*tch. You're a grown man/woman, act like
it. "But it's hard..." If you found this package, then you're a bright person :-) Have some
confidence in yourself for Christ sake.... I do. Not going to lead you off some cliff, promise!

Some IDEs provide virtual environments, but it's optional. PyCharm is one example. For these,
you will either use their GUI interface to add packages or use their built-in terminal to do pip
installs. It's not recommended for beginners to be working with Virtual Environments.
They can be quite confusing. However, if you are a seasoned professional developer and know
what you're doing, there is nothing about PySimpleGUI that will prevent you from working this
way. It's mostly a caution for beginners because more often than not, they get really messed
up and confused.

Officially Supported IDEs

A number of IDEs have known problems with PySimpleGUI . IDLE, Spyder, and Thonny all
have known, demonstrable, problems with intermittent or inconsistent results, especially
when a program exits and you want to continue to work with it. Any IDE that is based on
tkinter is going to have issues with the straight PySimpleGUI port. This is NOT a PySimpleGUI
problem.

The official list of supported IDEs is: 1. PyCharm (or course this is THE IDE to use for use with
PySimpleGUI) 2. Wing 3. Visual Studio

49/511

If you're on a Raspberry Pi or some other limited environment, then you'll may have to use
IDLE or Thonny. Just be aware there could be problems using the debugger to debug due to
both using tkinter.

Using The Docstrings (Don't skip this section)

Beginning with the 4.0 release of PySimpleGUI, the tkinter port, a whole new world opened up
for PySimpleGUI programmers, one where referencing the readme and ReadTheDocs
documentation is no longer needed. PyCharm and Wing both support these docstrings
REALLY well and I'm sure Visual Studio does too. Why is this important? Because it will teach
you the PySimpleGUI SDK as you use the package.

Don't know the parameters and various options for the InputText Element? It's a piece of
cake with PyCharm. You can set PyCharm to automatically display documentation about the
class, function, method, etc, that your cursor is currently sitting on. You can also manually
bring up the documentation by pressing CONTROL+Q. When you do, you'll be treated to a
window similar to this:

50/511

Note that my cursor is on InputText . On the left side of the screen, the InputText element's
parameters are not just shown to you, but they are each individually described to you, and, the
type is shown as well. I mean, honestly, how much more could you ask for?

OK, I suppose you could ask for a smaller window that just shows the parameters are you're
typing them in. Well, OK, in PyCharm, when your cursor is between the () press CONTROL+P.
When you do, you'll be treated to a little window like this one:

51/511

See.... written with the "Developer" in mind, at all times. It's about YOU, Mr/Ms Developer! So
enjoy your package.

The other ports of PySimpleGUI (Qt, WxPython, Web) have not yet had their docstrings
updated. They're NEXT in line to be better documented. Work on a tool has already begun to
make that happen sooner than later.

Using - Python 3
To use in your code, simply import.... import PySimpleGUI as sg

Then use either "high level" API calls or build your own windows.

sg.Popup('This is my first Popup')

Yes, it's just that easy to have a window appear on the screen
using Python. With PySimpleGUI, making a custom window
appear isn't much more difficult. The goal is to get you running
on your GUI within minutes, not hours nor days.

WARNING Do NOT use PySimpleGUI with Python 3.7.3 and 3.7.4.
tkiter is having issues with that release. Things like Table colors
stopped working entirely. None of us want to debug tkinter code. It's difficult enough
debugging your code and PySimpleGUI code. A lot of time has already been spent debugging
this one so no need for you to suffer too.

Python 3.7

It puzzles me why a beginner would install 3.7. Or even a seasoned programmer. What specific
feature of 3.7 are you using that is not in 3.6? If you are unable to answer this, then it's
strongly suggested that you run 3.6, an immensely solid release of Python with all those
goodie inside like f-strings. If you must run 3.7, try 3.7.2 instead. It does work with
PySimpleGUI with no known issues.

52/511

Using - Python 2.7
Those using Python 2.7 will import a different module name

import PySimpleGUI27 as sg

Code to Automatically Import Correct Version
Many of the demo programs use this check to see which package to use:

import sys
if sys.version_info[0] >= 3:
 import PySimpleGUI as sg
else:
 import PySimpleGUI27 as sg

This will automatically import the correct library based on the Python version number
reported by the Python interpreter.

NOTE: It's 2019 and 2.7 support is being systematically removed. This construct will be
removed from the demo programs shortly. 2.7 users can still run these demos, but they will
need to change the import from PySimpleGUI to PySimpleGUI27. It save 4 lines of code and an
import from sys in the process.

PEP8 Bindings For Methods and Functions
Beginning with release 4.3 of PySimpleGUI, all methods and function calls have PEP8
equivalents. This capability is only available, for the moment, on the PySimpleGUI tkinter port.
It is being added, as quickly as possible, to all of the ports.

As long as you know you're sticking with tkinter for the short term, it's safe to use the new
bindings.

The Non-PEP8 Methods and Functions
Why the need for these bindings? Simply put, the PySimpleGUI SDK has a PEP8 violation in the
method and function names. PySimpleGUI uses CamelCase names for methods and functions.
PEP8 suggests using snake_case_variables instead.

This has not caused any problems and few complaints, but it's important the the interfaces
into PySimpleGUI be compliant. Perhaps one of the reasons for lack of complaints is that the
Qt library also uses SnakeCase for its methods. This practice has the effect of labelling a

53/511

package as being "not Pythonic" and also suggests that ths package was originally used in
another language and then ported to Python. This is exactly the situation with Qt. It was
written for C++ and the interfaces continue to use C++ conventions.

PySimpleGUI was written in Python, for Python. The reason for the name problem was one of
ignorance. The PEP8 convention wasn't understood by the developers when PySimpleGUI was
designed and implemented.

You can, and will be able to for some time, use both names. However, at some point in the
future, the CamelCase names will disappear. A utility is planned to do the conversion for the
developer when the old names are remove from PySimpleGUI.

The help system will work with both names as will your IDE's docstring viewing. However, the
result found will show the CamelCase names. For example help(sg.Window.read) will show
the CamelCase name of the method/function. This is what will be returned:

Read(self, timeout=None, timeout_key='__TIMEOUT__')

The Renaming Convention
To convert a CamelCase method/function name to snake_case, you simply place an _ where
the Upper Case letter is located. If there are none, then only the first letter is changed.

Window.FindElement becomes Window.find_element

Class Variables
For the time being, class variables will remain the way they are currently. It is unusual, in
PySimpleGUI, for class variables to be modified or read by the user code so the impact of
leaving them is rarely seen in your code.

"High level calls" are those that start with "Popup". They are the most basic form of
communications with the user. They are named after the type of window they create, a pop-up
window. These windows are meant to be short lived while, either delivering information or
collecting it, and then quickly disappearing.

Think of Popups as your first windows, sorta like your first bicycle. It worked well, but was
limited. It probably wasn't long before you wanted more features and it seemed too limiting
for your newly found sense of adventure.

When you've reached the point with Popups that you are thinking of filing a GitHub
"Enhancement Issue" to get the Popup call extended to include a new feature that you think
would be helpful.... not just to you but others is what you had in mind, right? For the good of
others.

54/511

It's at THIS time that you should immediately turn to the section entitled "Custom Window API
Calls - Your First Window". Congratulations, you just graduated and are not an official "GUI
Designer". Oh, nevermind that you only started learning Python 2 weeks ago, you're a real GUI
Designer now so buck up and start acting like one.

But, for now, let's stick with these 1-line window calls, the Popups.

Think of the Popup call as the GUI equivalent of a print statement. It's your way of displaying
results to a user in the windowed world. Each call to Popup will create a new Popup window.

Popup calls are normally blocking. your program will stop executing until the user has closed
the Popup window. A non-blocking window of Popup discussed in the async section.

Just like a print statement, you can pass any number of arguments you wish. They will all be
turned into strings and displayed in the popup window.

There are a number of Popup output calls, each with a slightly different look (e.g. different
button labels).

The list of Popup output functions are: - Popup - PopupOk - PopupYesNo - PopupCancel -
PopupOkCancel - PopupError - PopupTimed, PopupAutoClose - PopupNoWait,
PopupNonBlocking

The trailing portion of the function name after Popup indicates what buttons are shown.
PopupYesNo shows a pair of button with Yes and No on them. PopupCancel has a Cancel

button, etc.

While these are "output" windows, they do collect input in the form of buttons. The Popup
functions return the button that was clicked. If the Ok button was clicked, then Popup returns
the string 'Ok'. If the user clicked the X button to close the window, then the button value
returned is None .

The function PopupTimed or PopupAutoClose are popup windows that will automatically
close after come period of time.

Here is a quick-reference showing how the Popup calls look.

sg.Popup('Popup')
sg.PopupOk('PopupOk')
sg.PopupYesNo('PopupYesNo')
sg.PopupCancel('PopupCancel')
sg.PopupOKCancel('PopupOKCancel')
sg.PopupError('PopupError')
sg.PopupTimed('PopupTimed')
sg.PopupAutoClose('PopupAutoClose')

Preview of popups:

55/511

Popup - Display a popup Window with as many parms as you wish to
include. This is the GUI equivalent of the "print" statement. It's also great
for "pausing" your program's flow until the user can read some error
messages.

Popup(args,
 title=None,
 button_color=None,
 background_color=None,
 text_color=None,
 button_type=0,
 auto_close=False,
 auto_close_duration=None,
 custom_text=(None, None),
 non_blocking=False,
 icon=None,
 line_width=None,
 font=None,
 no_titlebar=False,
 grab_anywhere=False,
 keep_on_top=False,
 location=(None, None))

Parameter Descriptions:

Name Meaning

*args (Any) Variable number of your arguments.
Load up the call with stuff to see!

title (str) Optional title for the window. If none
provided, the first arg will be used
instead.

button_color Tuple[str, str] Color of the buttons shown
(text color, button color)

background_color (str) Window's background color

text_color (str) text color

button_type (enum) NOT USER SET! Determines which
pre-defined buttons will be shown
(Default value = POPUP_BUTTONS_OK).
There are many Popup functions and they
call Popup, changing this parameter to get
the desired effect.

56/511

auto_close (bool) If True the window will
automatically close

auto_close_duration (int) time in seconds to keep window open
before closing it automatically

custom_text Union[Tuple[str, str], str] A string or pair
of strings that contain the text to display
on the buttons

non_blocking (bool) If True then will immediately return
from the function without waiting for the
user's input.

icon Union[str, bytes] icon to display on the
window. Same format as a Window call

line_width (int) Width of lines in characters. Defaults
to MESSAGE_BOX_LINE_WIDTH

font Union[str, tuple(font name, size,
modifiers) specifies the font family, size,
etc

no_titlebar (bool) If True will not show the frame
around the window and the titlebar
across the top

grab_anywhere (bool) If True can grab anywhere to move
the window. If no_titlebar is True,
grab_anywhere should likely be enabled
too

location Tuple[int, int] Location on screen to
display the top left corner of window.
Defaults to window centered on screen

return Union[str, None] Returns text of the
button that was pressed. None will be
returned if user closed window with X

Name Meaning

The other output Popups are variations on parameters. Usually the button_type parameter is
57/511

the primary one changed.

The other output Popups are variations on parameters. Usually the button_type parameter is
the primary one changed.

The choices for button_type are:

POPUP_BUTTONS_YES_NO
POPUP_BUTTONS_CANCELLED
POPUP_BUTTONS_ERROR
POPUP_BUTTONS_OK_CANCEL
POPUP_BUTTONS_OK
POPUP_BUTTONS_NO_BUTTONS

Note that you should not call Popup yourself with different button_types. Rely on the
Popup function named that sets that value for you. For example PopupYesNo will set the
button type to POPUP_BUTTONS_YES_NO for you.

Scrolled Output

There is a scrolled version of Popups should you have a lot of information to display.

Show a scrolled Popup window containing the user's text that was supplied. Use with as many
items to print as you want, just like a print statement.

PopupScrolled(args,
 title=None,
 button_color=None,
 yes_no=False,
 auto_close=False,
 auto_close_duration=None,
 size=(None, None),
 location=(None, None),
 non_blocking=False)

Parameter Descriptions:

Name Meaning

*args (Any) Variable number of items to display

title (str) Title to display in the window.

button_color Tuple[str, str] button color (foreground, background)

yes_no (bool) If True, displays Yes and No buttons instead of Ok

auto_close (bool) if True window will close itself

58/511

auto_close_duration Union[int, float] Older versions only accept int. Time in seconds
until window will close

size Tuple[int, int] (w,h) w=characters-wide, h=rows-high

location Tuple[int, int] Location on the screen to place the upper left
corner of the window

non_blocking (bool) if True the call will immediately return rather than waiting
on user input

return Union[str, None, TIMEOUT_KEY] Returns text of the button that
was pressed. None will be returned if user closed window with X

Name Meaning

PopupScrolled(*args, button_color=None, yes_no=False, auto_close=False, auto_close_duration=None, size=
(None, None), location=(None, None), title=None, non_blocking=False)

Typical usage:

sg.PopupScrolled(my_text)

The PopupScrolled will auto-fit the window size to the size of the text. Specify None in the
height field of a size parameter to get auto-sized height.

This call will create a scrolled box 80 characters wide and a height dependent upon the
number of lines of text.

sg.PopupScrolled(my_text, size=(80, None))

Note that the default max number of lines before scrolling happens is set to 50. At 50 lines the
scrolling will begin.

59/511

If non_blocking parameter is set, then the call will not blocking waiting for the user to close
the window. Execution will immediately return to the user. Handy when you want to dump out
debug info without disrupting the program flow.

Show Popup window and immediately return (does not block)

PopupNoWait(args,
 title=None,
 button_type=0,
 button_color=None,
 background_color=None,
 text_color=None,
 auto_close=False,
 auto_close_duration=None,
 non_blocking=True,
 icon=None,
 line_width=None,
 font=None,
 no_titlebar=False,
 grab_anywhere=False,
 keep_on_top=False,
 location=(None, None))

Parameter Descriptions:

Name Meaning

*args

title

button_type (Default value = POPUP_BUTTONS_OK)

button_color button color (foreground, background)

background_color color of background

text_color color of the text

auto_close (Default = False)

auto_close_duration

non_blocking (Default = True)

icon Icon to display

line_width Width of lines in characters

60/511

font specifies the font family, size, etc

no_titlebar (Default = False)

grab_anywhere If True can grab anywhere to move the window (Default =
False)

location

Name Meaning

The Popup call PopupNoWait or PopupNonBlocking will create a popup window and then
immediately return control back to you. All other popup functions will block, waiting for the
user to close the popup window.

This function is very handy for when you're debugging and want to display something as
output but don't want to change the programs's overall timing by blocking. Think of it like a
print statement. There are no return values on one of these Popups.

There are Popup calls for single-item inputs. These follow the pattern of Popup followed by
Get and then the type of item to get. There are 3 of these input Popups to choose from, each

with settings enabling customization. - PopupGetText - get a single line of text - PopupGetFile
- get a filename - PopupGetFolder - get a folder name

Use these Popups instead of making a custom window to get one data value, call the Popup
input function to get the item from the user. If you find the parameters are unable to create
the kind of window you are looking for, then it's time for you to create your own window.

Use this Popup to get a line of text from the user.

Display Popup with text entry field. Returns the text entered or None if closed / cancelled

PopupGetText(message,
 title=None,
 default_text="",
 password_char="",
 size=(None, None),
 button_color=None,
 background_color=None,
 text_color=None,
 icon=None,
 font=None,
 no_titlebar=False,
 grab_anywhere=False,
 keep_on_top=False,
 location=(None, None))

61/511

Parameter Descriptions:

Name Meaning

message (str) message displayed to user

title (str) Window title

default_text (str) default value to put into input area

password_char (str) character to be shown instead of actually typed characters

size Tuple[int, int] (width, height) of the InputText Element

button_color Tuple[str, str] Color of the button (text, background)

background_color (str) background color of the entire window

text_color (str) color of the message text

icon Union[bytes, str] filename or base64 string to be used for the
window's icon

font Union[str, Tuple[str, int]] specifies the font family, size, etc

no_titlebar (bool) If True no titlebar will be shown

grab_anywhere (bool) If True can click and drag anywhere in the window to move
the window

keep_on_top (bool) If True the window will remain above all current windows

location Tuyple[int, int] (x,y) Location on screen to display the upper left
corner of window

return Union[str, None] Text entered or None if window was closed or
cancel button clicked

import PySimpleGUI as sg
text = sg.PopupGetText('Title', 'Please input something')
sg.Popup('Results', 'The value returned from PopupGetText', text)

62/511

Gets a filename from the user. There are options to
configure the type of dialog box to show. Normally
an "Open File" dialog box is shown.

Display popup window with text entry field and
browse button so that a file can be chosen by user.

PopupGetFile(message,
 title=None,
 default_path="",
 default_extension="",
 save_as=False,
 multiple_files=False,
 file_types=(('ALL Files', '*.*'),),
 no_window=False,
 size=(None, None),
 button_color=None,
 background_color=None,
 text_color=None,
 icon=None,
 font=None,
 no_titlebar=False,
 grab_anywhere=False,
 keep_on_top=False,
 location=(None, None),
 initial_folder=None)

Parameter Descriptions:

Name Meaning

message (str) message displayed to user

title (str) Window title

default_path (str) path to display to user as starting point (filled into the input
field)

default_extension (str) If no extension entered by user, add this to filename (only
used in saveas dialogs)

63/511

save_as (bool) if True, the "save as" dialog is shown which will verify before
overwriting

multiple_files (bool) if True, then allows multiple files to be selected that are
returned with ';' between each filename

file_types Tuple[Tuple[str,str]] List of extensions to show using wildcards. All
files (the default) = (("ALL Files", "."),)

no_window (bool) if True, no PySimpleGUI window will be shown. Instead just
the tkinter dialog is shown

size Tuple[int, int] (width, height) of the InputText Element

button_color Tuple[str, str] Color of the button (text, background)

background_color (str) background color of the entire window

text_color (str) color of the message text

icon Union[bytes, str] filename or base64 string to be used for the
window's icon

font Union[str, Tuple[str, int]] specifies the font family, size, etc

no_titlebar (bool) If True no titlebar will be shown

grab_anywhere (bool) If True can click and drag anywhere in the window to move
the window

keep_on_top (bool) If True the window will remain above all current windows

location Tuyple[int, int] (x,y) Location on screen to display the upper left
corner of window

initial_folder (str) location in filesystem to begin browsing

return Union[str, None] string representing the file(s) chosen, None if
cancelled or window closed with X

Name Meaning

If configured as an Open File Popup then (save_as is not True) the dialog box will look like this.

64/511

If you set the parameter save_As to True, then the dialog box looks like this:

65/511

If you choose a filename that already exists, you'll get a warning popup box asking if it's OK.
You can also specify a file that doesn't exist. With an "Open" dialog box you cannot choose a
non-existing file.

A typical call produces this window.

text = sg.PopupGetFile('Please enter a file name')
sg.Popup('Results', 'The value returned from PopupGetFile', text)

The window created to get a folder name looks the same as the get a file name. The difference
is in what the browse button does. PopupGetFile shows an Open File dialog box while
PopupGetFolder shows an Open Folder dialog box.

Display popup with text entry field and browse button so that a folder can be chosen.

PopupGetFolder(message,
 title=None,
 default_path="",
 no_window=False,
 size=(None, None),
 button_color=None,
 background_color=None,
 text_color=None,
 icon=None,
 font=None,
 no_titlebar=False,
 grab_anywhere=False,
 keep_on_top=False,
 location=(None, None),
 initial_folder=None)

Parameter Descriptions:

Name Meaning

message (str) message displayed to user

title (str) Window title

66/511

default_path (str) path to display to user as starting point (filled into the input
field)

no_window (bool) if True, no PySimpleGUI window will be shown. Instead just
the tkinter dialog is shown

size Tuple[int, int] (width, height) of the InputText Element

button_color Tuple[str, str] Color of the button (text, background)

background_color (str) background color of the entire window

text_color (str) color of the message text

icon Union[bytes, str] filename or base64 string to be used for the
window's icon

font Union[str, Tuple[str, int]] specifies the font family, size, etc

no_titlebar (bool) If True no titlebar will be shown

grab_anywhere (bool) If True can click and drag anywhere in the window to move
the window

keep_on_top (bool) If True the window will remain above all current windows

location Tuyple[int, int] (x,y) Location on screen to display the upper left
corner of window

initial_folder (str) location in filesystem to begin browsing

return Union[str, None] string representing the path chosen, None if
cancelled or window closed with X

Name Meaning

This is a typpical call

 text = sg.PopupGetFolder('Please enter a folder name')
 sg.Popup('Results', 'The value returned from PopupGetFolder', text)

67/511

The animated Popup enables you to easily display a "loading" style animation
specified through a GIF file that is either stored in a file or a base64 variable.

Show animation one frame at a time. This function has its own internal clocking
meaning you can call it at any frequency and the rate the frames of video is
shown remains constant. Maybe your frames update every 30 ms but your event loop is
running every 10 ms. You don't have to worry about delaying, just call it every time through
the loop.

PopupAnimated(image_source,
 message=None,
 background_color=None,
 text_color=None,
 font=None,
 no_titlebar=True,
 grab_anywhere=True,
 keep_on_top=True,
 location=(None, None),
 alpha_channel=None,
 time_between_frames=0,
 transparent_color=None)

Parameter Descriptions:

Name Meaning

image_source Union[str, bytes] Either a filename or a base64 string.

message (str) An optional message to be shown with the animation

background_color (str) color of background

text_color (str) color of the text

font Union[str, tuple) specifies the font family, size, etc

no_titlebar (bool) If True then the titlebar and window frame will not be
shown

68/511

grab_anywhere (bool) If True then you can move the window just clicking
anywhere on window, hold and drag

keep_on_top (bool) If True then Window will remain on top of all other
windows currently shownn

location (int, int) (x,y) location on the screen to place the top left corner
of your window. Default is to center on screen

alpha_channel (float) Window transparency 0 = invisible 1 = completely
visible. Values between are see through

time_between_frames (int) Amount of time in milliseconds between each frame

transparent_color (str) This color will be completely see-through in your window.
Can even click through

Name Meaning

To close animated popups, call PopupAnimated with image_source=None . This will close all of
the currently open PopupAnimated windows.

Progress Meters!
We all have loops in our code. 'Isn't it joyful waiting, watching a counter scrolling past in a text
window? How about one line of code to get a progress meter, that contains statistics about
your code?

OneLineProgressMeter(title,
 current_value,
 max_value,
 key,
 *args,
 orientation=None,
 bar_color=DEFAULT_PROGRESS_BAR_COLOR,
 button_color=None,
 size=DEFAULT_PROGRESS_BAR_SIZE,
 border_width=DEFAULT_PROGRESS_BAR_BORDER_WIDTH):

Here's the one-line Progress Meter in action!

for i in range(1,10000):
 sg.OneLineProgressMeter('My Meter', i+1, 10000, 'key','Optional message')

That line of code resulted in this window popping up and updating.

69/511

A meter AND fun statistics to watch while
your machine grinds away, all for the price
of 1 line of code. With a little trickery you
can provide a way to break out of your loop
using the Progress Meter window. The
cancel button results in a False return
value from OneLineProgressMeter . It
normally returns True .

Be sure and add one to your loop counter
so that your counter goes from 1 to the max
value. If you do not add one, your counter
will never hit the max value. Instead it will
go from 0 to max-1.

Debug Output (EasyPrint = Print = eprint)
Another call in the 'Easy' families of APIs is EasyPrint . As is with other commonly used
PySimpleGUI calls, there are other names for the same call. You can use Print or eprint in
addition to EasyPrint . They all do the same thing, output to a debug window. If the debug
window isn't open, then the first call will open it. No need to do anything but stick an 'sg.Print'
call in your code. You can even replace your 'print' calls with calls to EasyPrint by simply
sticking the statement

print = sg.EasyPrint

at the top of your code.

Print is one of the better ones to use as it's easy to remember. It is simply print with a
capital P. sg.Print('this will go to the debug window')

import PySimpleGUI as sg

for i in range(100):
 sg.Print(i)

70/511

Or if you didn't want to change your code:

import PySimpleGUI as sg

print=sg.Print
for i in range(100):
print(i)

Just like the standard print call, EasyPrint supports the sep and end keyword arguments.
Other names that can be used to call EasyPrint include Print , eprint , If you want to close
the window, call the function EasyPrintClose .

You can change the size of the debug window using the SetOptions call with the
debug_win_size parameter.

There is an option to tell PySimpleGUI to reroute all of your stdout and stderr output to this
window. To do so call EasyPrint with the parameter do_not_reroute_stdout set to False . After
calling it once with this parameter set to True, all future calls to a normal print will go to the
debug window.

If you close the debug window it will re-open the next time you Print to it. If you wish to close
the window using your code, then you can call either EasyPrintClose() or PrintClose()

Custom window API Calls (Your First window)

71/511

This is the FUN part of the programming of this GUI. In order to really get the most out of the
API, you should be using an IDE that supports auto complete or will show you the definition of
the function. This will make customizing go smoother.

This first section on custom windows is for your typical, blocking, non-persistent window. By
this I mean, when you "show" the window, the function will not return until the user has
clicked a button or closed the window with an X.

Two other types of windows exist. 1. Persistent window - the Window.read() method returns
and the window continues to be visible. This is good for applications like a chat window or a
timer or anything that stays active on the screen for a while. 2. Asynchronous window - the
trickiest of the lot. Great care must be exercised. Examples are an MP3 player or status
dashboard. Async windows are updated (refreshed) on a periodic basis. You can spot them
easily as they will have a timeout parameter on the call to read. event, values =
window.Read(timeout=100)

It's both not enjoyable nor helpful to immediately jump into tweaking each and every little
thing available to you. Make some simple windows. Use the Cookbook and the Demo
Programs as a way to learn and as a "starting point".

The window Designer
The good news to newcomers to GUI programming is that PySimpleGUI has a window
designer. Better yet, the window designer requires no training, no downloads, and everyone
knows how to use it.

72/511

It's a manual process, but if you follow the instructions, it will take only a minute to do and the
result will be a nice looking GUI. The steps you'll take are: 1. Sketch your GUI on paper 2. Divide
your GUI up into rows 3. Label each Element with the Element name 4. Write your Python code
using the labels as pseudo-code

Let's take a couple of examples.

Enter a number.... Popular beginner programs are often based on a game or logic puzzle that
requires the user to enter something, like a number. The "high-low" answer game comes to
mind where you try to guess the number based on high or low tips.

Step 1- Sketch the GUI

73/511

Step 2 - Divide into rows

Step 3 - Label elements

74/511

Step 4 - Write the code The code we're writing is the layout of the GUI itself. This tutorial only
focuses on getting the window code written, not the stuff to display it, get results.

We have only 1 element on the first row, some text. Rows are written as a "list of elements", so
we'll need [] to make a list. Here's the code for row 1

[sg.Text('Enter a number')]

Row 2 has 1 elements, an input field.

[sg.Input()]

Row 3 has an OK button

[sg.OK()]

Now that we've got the 3 rows defined, they are put into a list that represents the entire
window.

layout = [[sg.Text('Enter a Number')],
 [sg.Input()],
 [sg.OK()]]

Finally we can put it all together into a program that will display our window.

import PySimpleGUI as sg

layout = [[sg.Text('Enter a Number')],
 [sg.Input()],
 [sg.OK()]]

event, values = sg.Window('Enter a number example', layout).Read()

sg.Popup(event, values[0])

75/511

Your call to Read will return a dictionary, but will "look like a list" in how you access it. The
first input field will be entry 0, the next one is 1, etc. Later you'll learn about the key
parameter which allows you to use your own values to identify elements instead of them
being numbered for you.

Example 2 - Get a filename

Let's say you've got a utility you've written that operates on some input file and you're ready to
use a GUI to enter than filename rather than the command line. Follow the same steps as the
previous example - draw your window on paper, break it up into rows, label the elements.

Writing the code for this one is just as straightforward. There is one tricky thing, that browse
for a file button. Thankfully PySimpleGUI takes care of associating it with the input field next to
it. As a result, the code looks almost exactly like the window on the paper.

76/511

import PySimpleGUI as sg

layout = [[sg.Text('Filename')],
 [sg.Input(), sg.FileBrowse()],
 [sg.OK(), sg.Cancel()]]

window sg.Window('Get filename example', layout)
event, values = window.read()
window.close()

sg.Popup(event, values[0])

Read on for detailed instructions on the calls that show the window and return your results.

Copy these design patterns!
All of your PySimpleGUI programs will utilize one of these 2 design patterns depending on the
type of window you're implementing.

Pattern 1 - "One-shot Window" - Read a window one time then
close it
This will be the most common pattern you'll follow if you are not using an "event loop" (not
reading the window multiple times). The window is read and closed.

The input fields in your window will be returned to you as a dictionary (syntactically it looks
just like a list lookup)

import PySimpleGUI as sg

layout = [[sg.Text('SHA-1 and SHA-256 Hashes for the file')],
 [sg.InputText(), sg.FileBrowse()],
 [sg.Submit(), sg.Cancel()]]

window = sg.Window('SHA-1 & 256 Hash', layout)

event, values = window.read()
window.close()

source_filename = values[0]

Pattern 2 A - Persistent window (multiple reads using an event
loop)
Some of the more advanced programs operate with the window remaining visible on the
screen. Input values are collected, but rather than closing the window, it is kept visible acting
as a way to both output information to the user and gather input data.

77/511

This code will present a window and will print values until the user clicks the exit button or
closes window using an X.

import PySimpleGUI as sg

layout = [[sg.Text('Persistent window')],
 [sg.Input()],
 [sg.Button('Read'), sg.Exit()]]

window = sg.Window('Window that stays open', layout)

while True:
 event, values = window.read()
 if event is None or event == 'Exit':
 break
 print(event, values)

window.close()

Pattern 2 B - Persistent window (multiple reads using an event
loop + updates data in window)
This is a slightly more complex, but maybe more realistic version that reads input from the
user and displays that input as text in the window. Your program is likely to be doing both of
those activities (input and output) so this will give you a big jump-start.

Do not worry yet what all of these statements mean. Just copy it so you can begin to play with
it, make some changes. Experiment to see how thing work.

A final note... the parameter do_not_clear in the input call determines the action of the input
field after a button event. If this value is True, the input value remains visible following button
clicks. If False, then the input field is CLEARED of whatever was input. If you are building a
"Form" type of window with data entry, you likely want False. The default is to NOT clear the
input element (do_not_clear=True).

This example introduces the concept of "keys". Keys are super important in PySimpleGUI as
they enable you to identify and work with Elements using names you want to use. Keys can be
ANYTHING, except None . To access an input element's data that is read in the example
below, you will use values['_IN_'] instead of values[0] like before.

78/511

import PySimpleGUI as sg

layout = [[sg.Text('Your typed chars appear here:'), sg.Text('', key='_OUTPUT_')],
 [sg.Input(key='_IN_')],
 [sg.Button('Show'), sg.Button('Exit')]]

window = sg.Window('Window Title', layout)

while True:
 event, values = window.read()
 print(event, values)
 if event is None or event == 'Exit':
 break
 if event == 'Show':

 window['_OUTPUT_'].update(values['_IN_'])

 window['_OUTPUT_'](values['_IN_'])

window.close()

Qt Designer

There actually is a PySimpleGUI Window Designer that uses Qt's window designer. It's outside
the scope of this document however. You'll find the project here:
https://github.com/nngogol/PySimpleGUIDesigner

I hope to start using it more soon.

How GUI Programming in Python Should Look? At least for
beginners ?
While one goal was making it simple to create a GUI another just as important goal was to do it
in a Pythonic manner. Whether it achieved these goals is debatable, but it was an attempt just
the same.

The key to custom windows in PySimpleGUI is to view windows as ROWS of GUI Elements.
Each row is specified as a list of these Elements. Put the rows together and you've got a
window. This means the GUI is defined as a series of Lists, a Pythonic way of looking at things.

Let's dissect this little program

79/511

import PySimpleGUI as sg

layout = [[sg.Text('Rename files or folders')],
 [sg.Text('Source for Folders', size=(15, 1)), sg.InputText(), sg.FolderBrowse()],
 [sg.Text('Source for Files ', size=(15, 1)), sg.InputText(), sg.FolderBrowse()],
 [sg.Submit(), sg.Cancel()]]

window = sg.Window('Rename Files or Folders', layout)

event, values = window.read()
window.close()
folder_path, file_path = values[0], values[1]
print(folder_path, file_path)

Let's agree the window has 4 rows.

The first row only has text that reads Rename files or folders

The second row has 3 elements in it. First the text Source for Folders , then an input field,
then a browse button.

Now let's look at how those 2 rows and the other two row from Python code:

layout = [[sg.Text('Rename files or folders')],
 [sg.Text('Source for Folders', size=(15, 1)), sg.InputText(), sg.FolderBrowse()],
 [sg.Text('Source for Files ', size=(15, 1)), sg.InputText(), sg.FolderBrowse()],
 [sg.Submit(), sg.Cancel()]]

See how the source code mirrors the layout? You simply make lists for each row, then submit
that table to PySimpleGUI to show and get values from.

And what about those return values? Most people simply want to show a window, get the
input values and do something with them. So why break up the code into button callbacks, etc,
when I simply want my window's input values to be given to me.

For return values the window is scanned from top to bottom, left to right. Each field that's an
input field will occupy a spot in the return values.

80/511

In our example window, there are 2 fields, so the return values from this window will be a
dictionary with 2 values in it. Remember, if you do not specify a key when creating an
element, one will be created for you. They are ints starting with 0. In this example, we have 2
input elements. They will be addressable as values[0] and values[1]

event, values = window.read()
folder_path, file_path = values[0], values[1]

In one statement we both show the window and read the user's inputs. In the next line of
code the dictionary of return values is split into individual variables folder_path and file_path .

Isn't this what a Python programmer looking for a GUI wants? Something easy to work with to
get the values and move on to the rest of the program, where the real action is taking place.
Why write pages of GUI code when the same layout can be achieved with PySimpleGUI in 3 or
4 lines of code. 4 lines or 40? Most would choose 4.

Return values
There are 2 return values from a call to Window.read() , an event that caused the Read to
return and values a list or dictionary of values. If there are no elements with keys in the
layout, then it will be a list. However, some elements, like some buttons, have a key
automatically added to them. It's best to use keys on all of your input type elements.

Two Return Values

All Window Read calls return 2 values. By convention a read statement is written:

event, values = window.read()

You don't HAVE to write your reads in this way. You can name your variables however you
want. But if you want to code them in a way that other programmers using PySimpleGUI are
used to, then use this statement.

Events
The first parameter event describes why the read completed. Events are one of these:

For all Windows:

Button click
Window closed using X

For Windows that have specifically enabled these. Please see the appropriate section in this
document to learn about how to enable these and what the event return values are.

Keyboard key press
81/511

Mouse wheel up/down
Menu item selected
An Element Changed (slider, spinner, etc)
A list item was clicked
Return key was pressed in input element
Timeout waiting for event
Text was clicked
Combobox item chosen
Table row selected
etc

Most of the time the event will be a button click or the window was closed. The other Element-
specific kinds of events happen when you set enable_events=True when you create the
Element.

Window closed event

Another convention to follow is the check for windows being closed with an X. This is an
critically important event to catch. If you don't check for this and you attempt to use the
window, your program will crash. Please check for closed window and exit your program
gracefully. Your users will like you for it.

Close your windows when you're done with them even though exiting the program will also
close them. tkinter can generate an error/warning sometimes if you don't close the window.
For other ports, such as PySimpleGUIWeb, not closing the Window will potentially cause your
program to continue to run in the background.

To check for a closed window use this line of code:

if event is None:

Putting it all together we end up with an "event loop" that looks something like this:

while True:
 event, values = window.read()
 if event is None:
 break
window.Close()

You will very often see the examples and demo programs write this check as:

 event, values = window.read()
 if event in (None, 'Exit'):
 break

This if statement is the same as:

82/511

 if event is None or event == 'Exit':
 break

Instead of 'Exit' use the name/key of the button you want to exit the window (Cancel, Quit,
etc)

Button Click Events

By default buttons will always return a click event, or in the case of realtime buttons, a button
down event. You don't have to do anything to enable button clicks. To disable the events,
disable the button using its Update method.

You can enable an additional "Button Modified" event by setting enable_events=True in the
Button call. These events are triggered when something 'writes' to a button, usually it's
because the button is listed as a "target" in another button.

The button value from a Read call will be one of 2 values: 1. The Button's text - Default 2. The
Button's key - If a key is specified

If a button has a key set when it was created, then that key will be returned, regardless of what
text is shown on the button. If no key is set, then the button text is returned. If no button was
clicked, but the window returned anyway, the event value is the key that caused the event to
be generated. For example, if enable_events is set on an Input Element and someone types
a character into that Input box, then the event will be the key of the input box.

None is returned when the user clicks the X to close a window.

If your window has an event loop where it is read over and over, remember to give your user
an "out". You should always check for a None value and it's a good practice to provide an Exit
button of some kind. Thus design patterns often resemble this Event Loop:

while True:
 event, values = window.read()
 if event is None or event == 'Quit':
 break

Actually, the more "Pythonic version" is used in most Demo Programs and examples. They do
exactly the same thing.

while True:
 event, values = window.read()
 if event in (None, 'Quit'):
 break

Element Events

83/511

Some elements are capable of generating events when something happens to them. For
example, when a slider is moved, or list item clicked on or table row clicked on. These events
are not enabled by default. To enable events for an Element, set the parameter
enable_events=True . This is the same as the older click_submits parameter. You will find the
click_submits parameter still in the function definition. You can continue to use it. They are

the same setting. An 'or' of the two values is used. In the future, click_submits will be removed
so please migrate your code to using enable_events .

Name events

InputText any change

Combo item chosen

Listbox selection changed

Radio selection changed

Checkbox selection changed

Spinner new item selected

Multiline any change

Text clicked

Status Bar clicked

Graph clicked

Graph dragged

Graph drag ended (mouse
up)

TabGroup tab clicked

Slider slider moved

Table row selected

Tree node selected

ButtonMenu menu item chosen

84/511

Right click
menu

menu item chosen

Name events

Other Events

Menubar menu item chosen for MenuBar menus and ButtonMenu menus

You will receive the key for the MenuBar and ButtonMenu. Use that key to read the value in
the return values dictionary. The value shown will be the full text plus key for the menu item
chosen. Remember that you can put keys onto menu items. You will get the text and the key
together as you defined it in the menu definition.

Unlike menu bar and button menus, you will directly receive the menu item text and its key
value. You will not do a dictionary lookup to get the value. It is the event code returned from
WindowRead().

Windows - keyboard, mouse scroll wheel

Windows are capable of returning keyboard events. These are returned as either a single
character or a string if it's a special key. Experiment is all I can say. The mouse scroll wheel
events are also strings. Put a print in your code to see what's returned.

Timeouts

If you set a timeout parameter in your read, then the system TIMEOUT_KEY will be returned. If
you specified your own timeout key in the Read call then that value will be what's returned
instead.

The values Variable - Return values as a list

The second parameter from a Read call is either a list or a dictionary of the input fields on the
Window.

By default return values are a list of values, one entry for each input field, but for all but the
simplest of windows the return values will be a dictionary. This is because you are likely to use
a 'key' in your layout. When you do, it forces the return values to be a dictionary.

Each of the Elements that are Input Elements will have a value in the list of return values. If you
know for sure that the values will be returned as a list, then you could get clever and unpack
directly into variables.

85/511

event, (filename, folder1, folder2, should_overwrite) = sg.Window('My title',
window_rows).Read()

Or, more commonly, you can unpack the return results separately. This is the preferred
method because it works for both list and dictionary return values.

event, values = sg.Window('My title', window_rows).Read()
event, value_list = window.read()
value1 = value_list[0]
value2 = value_list[1]
 ...

However, this method isn't good when you have a lot of input fields. If you insert a new
element into your window then you will have to shuffle your unpacks down, modifying each of
the statements to reference value_list[x] .

The more common method is to request your values be returned as a dictionary by placing
keys on the "important" elements (those that you wish to get values from and want to interact
with)

values Variable - Return values as a dictionary

For those of you that have not encountered a Python dictionary, don't freak out! Just copy and
paste the sample code and modify it. Follow this design pattern and you'll be fine. And you
might learn something along the way.

For windows longer than 3 or 4 fields you will want to use a dictionary to help you organize
your return values. In almost all (if not all) of the demo programs you'll find the return values
being passed as a dictionary. It is not a difficult concept to grasp, the syntax is easy to
understand, and it makes for very readable code.

The most common window read statement you'll encounter looks something like this:

window = sg.Window("My title", layout).Read()

To use a dictionary, you will need to: * Mark each input element you wish to be in the
dictionary with the keyword key .

If any element in the window has a key , then all of the return values are returned via a
dictionary. If some elements do not have a key, then they are numbered starting at zero.

Let's take a look at your first dictionary-based window.

86/511

import PySimpleGUI as sg

layout = [
 [sg.Text('Please enter your Name, Address, Phone')],
 [sg.Text('Name', size=(15, 1)), sg.InputText('1', key='_NAME_')],
 [sg.Text('Address', size=(15, 1)), sg.InputText('2', key='_ADDRESS_')],
 [sg.Text('Phone', size=(15, 1)), sg.InputText('3', key='_PHONE_')],
 [sg.Submit(), sg.Cancel()]
]

window = sg.Window('Simple data entry window', layout)
event, values = window.read()
window.Close()

sg.Popup(event, values, values['_NAME_'], values['_ADDRESS_'], values['_PHONE_'])

To get the value of an input field, you use whatever value used as the key value as the index
value. Thus to get the value of the name field, it is written as

values['_NAME_']

Think of the variable values in the same way as you would a list, however, instead of using
0,1,2, to reference each item in the list, use the values of the key. The Name field in the
window above is referenced by values['_NAME_'] .

You will find the key field used quite heavily in most PySimpleGUI windows unless the window
is very simple.

One convention you'll see in many of the demo programs is keys being named in all caps with
an underscores at the beginning and the end. You don't HAVE to do this... your key value may
look like this: key = '_NAME__'

The reason for this naming convention is that when you are scanning the code, these key
values jump out at you. You instantly know it's a key. Try scanning the code above and see if
those keys pop out. key = '_NAME__'

The Event Loop / Callback Functions
All GUIs have one thing in common, an "event loop". Usually the GUI framework runs the
event loop for you, but sometimes you want greater control and will run your own event loop.
You often hear the term event loop when discussing embedded systems or on a Raspberry Pi.

With PySimpleGUI if your window will remain open following button clicks, then your code will
have an event loop. If your program shows a single "one-shot" window, collects the data and
then has no other GUI interaction, then you don't need an event loop.

There's nothing mysterious about event loops... they are loops where you take care of.... wait
for it..... events. Events are things like button clicks, key strokes, mouse scroll-wheel up/down.

87/511

This little program has a typical PySimpleGUI Event Loop.

The anatomy of a PySimpleGUI event loop is as follows, generally speaking. * The actual "loop"
part is a while True loop * "Read" the event and any input values the window has * Check to
see if window was closed or user wishes to exit * A series of if event statements

Here is a complete, short program to demonstrate each of these concepts.

88/511

import PySimpleGUI as sg

sg.ChangeLookAndFeel('GreenTan')

menu_def = [['&File', ['&Open', '&Save', 'E&xit', 'Properties']],
 ['&Edit', ['Paste', ['Special', 'Normal',], 'Undo'],],
 ['&Help', '&About...'],]

column1 = [[sg.Text('Column 1', background_color='lightblue', justification='center', size=(10, 1))],
 [sg.Spin(values=('Spin Box 1', '2', '3'), initial_value='Spin Box 1')],
 [sg.Spin(values=('Spin Box 1', '2', '3'), initial_value='Spin Box 2')],
 [sg.Spin(values=('Spin Box 1', '2', '3'), initial_value='Spin Box 3')]]

layout = [
 [sg.Menu(menu_def, tearoff=True)],
 [sg.Text('(Almost) All widgets in one Window!', size=(30, 1), justification='center', font=("Helvetica", 25),
relief=sg.RELIEF_RIDGE)],
 [sg.Text('Here is some text.... and a place to enter text')],
 [sg.InputText('This is my text')],
 [sg.Frame(layout=[
 [sg.Checkbox('Checkbox', size=(10,1)), sg.Checkbox('My second checkbox!', default=True)],
 [sg.Radio('My first Radio! ', "RADIO1", default=True, size=(10,1)), sg.Radio('My second Radio!',
"RADIO1")]], title='Options',title_color='red', relief=sg.RELIEF_SUNKEN, tooltip='Use these to set flags')],
 [sg.Multiline(default_text='This is the default Text should you decide not to type anything', size=(35, 3)),
 sg.Multiline(default_text='A second multi-line', size=(35, 3))],
 [sg.InputCombo(('Combobox 1', 'Combobox 2'), size=(20, 1)),
 sg.Slider(range=(1, 100), orientation='h', size=(34, 20), default_value=85)],
 [sg.InputOptionMenu(('Menu Option 1', 'Menu Option 2', 'Menu Option 3'))],
 [sg.Listbox(values=('Listbox 1', 'Listbox 2', 'Listbox 3'), size=(30, 3)),
 sg.Frame('Labelled Group',[[
 sg.Slider(range=(1, 100), orientation='v', size=(5, 20), default_value=25, tick_interval=25),
 sg.Slider(range=(1, 100), orientation='v', size=(5, 20), default_value=75),
 sg.Slider(range=(1, 100), orientation='v', size=(5, 20), default_value=10),
 sg.Column(column1, background_color='lightblue')]])],
 [sg.Text('_' * 80)],
 [sg.Text('Choose A Folder', size=(35, 1))],
 [sg.Text('Your Folder', size=(15, 1), auto_size_text=False, justification='right'),
 sg.InputText('Default Folder'), sg.FolderBrowse()],
 [sg.Submit(tooltip='Click to submit this form'), sg.Cancel()]]

window = sg.Window('Everything bagel', layout, default_element_size=(40, 1), grab_anywhere=False)
event, values = window.read()

sg.Popup('Title',
 'The results of the window.',
 'The button clicked was "{}"'.format(event),
 'The values are', values)

89/511

This is a complex window with quite a bit of custom sizing to make things line up well. This is
code you only have to write once. When looking at the code, remember that what you're
seeing is a list of lists. Each row contains a list of Graphical Elements that are used to create
the window. If you see a pair of square brackets [] then you know you're reading one of the
rows. Each row of your GUI will be one of these lists.

This window may look "ugly" to you which is because no effort has been made to make it look
nice. It's purely functional. There are 30 Elements in the window. THIRTY Elements.
Considering what it does, it's miraculous or in the least incredibly impressive. Why? Because in
less than 50 lines of code that window was created, shown, collected the results and showed
the results in another window.

50 lines. It'll take you 50 lines of tkinter or Qt code to get the first 3 elements of the window
written, if you can even do that.

No, let's be clear here... this window will take a massive amount of code using the conventional
Python GUI packages. It's a fact and if you care to prove me wrong, then by ALL means PLEASE
do it. Please write this window using tkinter, Qt, or WxPython and send the code!

Note this window even has a menubar across the top, something easy to miss.

90/511

Clicking the Submit button caused the window call to return. The call to Popup resulted in this
window.

91/511

Note, event values can be None . The value for event will be the text that is displayed on
the button element when it was created or the key for the button. If the user closed the
window using the "X" in the upper right corner of the window, then event will be None . It is
vitally important that your code contain the proper checks for None.

For "persistent windows", always give your users a way out of the window. Otherwise you'll
end up with windows that never properly close. It's literally 2 lines of code that you'll find in
every Demo Program. While you're at it, make sure a window.Close() call is after your event
loop so that your window closes for sure.

You can see in the results Popup window that the values returned are a dictionary. Each input
field in the window generates one item in the return values list. Input fields often return a
string . Check Boxes and Radio Buttons return bool . Sliders return float or perhaps int

depending on how you configured it or which port you're using.

If your window has no keys and it has no buttons that are "browse" type of buttons, then it will
return values to you as a list instead of a dictionary. If possible PySimpleGUI tries to return the
values as a list to keep things simple.

Note in the list of return values in this example, many of the keys are numbers. That's because
no keys were specified on any of the elements (although one was automatically made for you).
If you don't specify a key for your element, then a number will be sequentially assigned. For
elements that you don't plan on modifying or reading values from, like a Text Element, you
can skip adding keys. For other elements, you'll likely want to add keys so that you can easily
access the values and perform operations on them.

Operations That Take a "Long Time"

92/511

If you're a Windows user you've seen windows show in their title bar "Not Responding" which
is soon followed by a Windows popop stating that "Your program has stopped responding".
Well, you too can make that message and popup appear if you so wish! All you need to do is
execute an operation that takes "too long" (i.e. a few seconds) inside your event loop.

You have a couple of options for dealing this with. If your operation can be broken up into
smaller parts, then you can call Window.Refresh() occassionally to avoid this message. If
you're running a loop for example, drop that call in with your other work. This will keep the
GUI happy and Window's won't complain.

If, on the other hand, your operation is not under your control or you are unable to add
Refresh calls, then the next option available to you is to move your long operations into a

thread.

There are a couple of demo programs available for you to see how to do this. You basically put
your work into a thread. When the thread is completed, it tells the GUI by sending a message
through a queue. The event loop will run with a timer set to a value that represents how
"responsive" you want your GUI to be to the work completing.

These 2 demo programs are called

Demo_Threaded_Work.py - Best documented. Single thread used for long task
Demo_Multithreaded_Long_Tasks.py - Similar to above, but with less fancy GUI. Allows you to set amount of
time

These 2 particular demos have a LOT of comments showing you where to add your code, etc.
The amount of code to do this is actually quite small and you don't need to understand the
mechanisms used if you simply follow the demo that's been prepared for you.

Multitheaded Programs

While on the topic of multiple threads, another demo was prepared that shows how you can
run multiple threads in your program that all communicate with the event loop in order to
display something in the GUI window. Recall that for PySimpleGUI (at least the tkinter port)
you cannot make PySimpleGUI calls in threads other than the main program thread.

The key to these threaded programs is communication from the threads to your event loop.
The mechanism chosen for these demonstrations uses the Python built-in queue module.
The event loop polls these queues to see if something has been sent over from one of the
threads to be displayed.

You'll find the demo that shows multiple threads communicating with a single GUI is called:

Demo_Multithreaded_Queued.py

93/511

Once again a warning is in order for plain PySimpleGUI (tkinter based) - your GUI must never
run as anything but the main program thread and no threads can directly call PySimpleGUI
calls.

Building Custom Windows
You will find it much easier to write code using PySimpleGUI if you use an IDE such as
PyCharm. The features that show you documentation about the API call you are making will
help you determine which settings you want to change, if any. In PyCharm, two commands are
particularly helpful.

Control-Q (when cursor is on function name) brings up a box with the function definition
Control-P (when cursor inside function call "()") shows a list of parameters and their default values

Synchronous / Asynchronous Windows
The most common use of PySimpleGUI is to display and collect information from the user. The
most straightforward way to do this is using a "blocking" GUI call. Execution is "blocked" while
waiting for the user to close the GUI window/dialog box.

You've already seen a number of examples above that use blocking windows. You'll know it
blocks if the Read call has no timeout parameter.

A blocking Read (one that waits until an event happens) look like this:

event, values = window.read()

A non-blocking / Async Read call looks like this:

event, values = window.Read(timeout=100)

You can learn more about these async / non-blocking windows toward the end of this
document.

Window Object - Beginning a window
The first step is to create the window object using the desired window customizations.

Note - There is no direct support for "modal windows" in PySimpleGUI. All windows are
accessable at all times unless you manually change the windows' settings.

IMPORTANT - Many of the Window methods require you to either call Window.Read or
Window.Finalize (or set finalize=True in your Window call) before you call the method. This

is because these 2 calls are what actually creates the window using the underlying GUI

94/511

Framework. Prior to one of those calls, the methods are likely to crash as they will not yet have
their underlying widgets created.

Window Location

PySimpleGUI computes the exact center of your window and centers the window on the
screen. If you want to locate your window elsewhere, such as the system default of (0,0), if you
have 2 ways of doing this. The first is when the window is created. Use the location parameter
to set where the window. The second way of doing this is to use the SetOptions call which will
set the default window location for all windows in the future.

Multiple Monitors and Linux

The auto-centering (default) location for your PySimpleGUI window may not be correct if you
have multiple monitors on a Linux system. On Windows multiple monitors appear to work ok
as the primary monitor the tkinter utilizes and reports on.

Linux users with multiple monitors that have a problem when running with the default
location will need to specify the location the window should be placed when creating the
window by setting the location parameter.

Window Size

You can get your window's size by access the Size property. The window has to be Read once
or Finalized in order for the value to be correct. Note that it's a property, not a call.

my_windows_size = window.Size

To finalize your window:

window = Window('My Title', layout).Finalize()

If using PySimpleGUI 4.2 and later:

window = Window('My Title', layout, finalize=True)

Element Sizes

There are multiple ways to set the size of Elements. They are:

1. The global default size - change using SetOptions function
2. At the Window level - change using the parameter default_element_size in your call to

Window
3. At the Element level - each element has a size parameter

95/511

Element sizes are measured in characters (there are exceptions). A Text Element with size =
(20,1) has a size of 20 characters wide by 1 character tall.

The default Element size for PySimpleGUI is (45,1) .

There are a couple of widgets where one of the size values is in pixels rather than characters.
This is true for Progress Meters and Sliders. The second parameter is the 'height' in pixels.

No Titlebar

Should you wish to create cool looking windows that are clean with no windows titlebar, use
the no_titlebar option when creating the window.

Be sure an provide your user an "exit" button or they will not be able to close the window!
When no titlebar is enabled, there will be no icon on your taskbar for the window. Without an
exit button you will need to kill via taskmanager... not fun.

Windows with no titlebar rely on the grab anywhere option to be enabled or else you will be
unable to move the window.

Windows without a titlebar can be used to easily create a floating launcher.

Linux users! Note that this setting has side effects for some of the other Elements. Multi-line
input doesn't work at all, for example So, use with caution.

Grab Anywhere

This is a feature unique to PySimpleGUI.

Note - there is a warning message printed out if the user closes a non-blocking window using a
button with grab_anywhere enabled. There is no harm in these messages, but it may be
distressing to the user. Should you wish to enable for a non-blocking window, simply get
grab_anywhere = True when you create the window.

Always on top

To keep a window on top of all other windows on the screen, set keep_on_top = True when the
window is created. This feature makes for floating toolbars that are very helpful and always
visible on your desktop.

Focus

96/511

PySimpleGUI will set a default focus location for you. This generally means the first input field.
You can set the focus to a particular element. If you are going to set the focus yourself, then
you should turn off the automatic focus by setting use_default_focus=False in your Window
call.

Closing Windows
When you are completely done with a window, you should close it and then delete it so that
the resources, in particular the tkinter resources, are properly cleaned up.

If you wish to do this in 1 line of code, here's your line:

window.close(); del window

The delete helps with a problem multi-threaded application encounter where tkinter
complains that it is being called from the wrong thread (not the program's main thread)

Window Methods That Complete Formation of Window
After you have completed making your layout, stored in a variable called layout in these
examples, you will create your window.

The creation part of a window involves 3 steps.

1. Create a Window object
2. Adding your Layout to the window
3. Optional - Finalize if want to make changes prior to Read call

Over time the PySimpleGUI code has continued to compact, compress, so that as little code as
possible will need to be written by the programmer.

The Individual Calls

This is the "long form" as each method is called individually.

window = sg.Window('My Title')
window.Layout(layout)
window.Finalize()

Chaining The Calls (the old method)

The next level of compression that was done was to chain the calls together into a single line
of code.

window = sg.Window('My Title').Layout(layout).Finalize()

97/511

Using Parameters Instead of Calls (New Preferred Method)

Here's a novel concept, instead of using chaining, something that's foreign to beginners, use
parameters to the Window call. And that is exactly what's happened as of 4.2 of the
PySimpleGUI port.

window = sg.Window('My Title', layout, finalize=True)

Rather than pushing the work onto the user of doing the layout and finalization calls, let the
Window initialization code do it for you. Yea, it sounds totally obvious now, but it didn't a few
months ago.

This capability has been added to all 4 PySimpleGUI ports but none are on PyPI just yet as
there is some runtime required first to make sure nothing truly bad is going to happen.

Call to set the window layout. Must be called prior to Read . Most likely "chained" in line with
the Window creation.

window = sg.Window('My window title', layout)

Finalize() or Window parameter finalize=True
Call to force a window to go through the final stages of initialization. This will cause the tkinter
resources to be allocated so that they can then be modified. This also causes your window to
appear. If you do not want your window to appear when Finalize is called, then set the Alpha to
0 in your window's creation parameters.

If you want to call an element's Update method or call a Graph element's drawing primitives,
you must either call Read or Finalize prior to making those calls.

Read(timeout=None, timeout_key=TIMEOUT_KEY)

Read the Window's input values and button clicks in a blocking-fashion

Returns event, values. Adding a timeout can be achieved by setting timeout=number of
milliseconds before the Read times out after which a "timeout event" is returned. The value of
timeout_key will be returned as the event. If you do not specify a timeout key, then the value
TIMEOUT_KEY will be returned.

If you set the timeout = 0, then the Read will immediately return rather than waiting for input
or for a timeout. It's a truly non-blocking "read" of the window.

Layouts

98/511

While at this point in the documentation you've not been shown very much about each
Element available, you should read this section carefully as you can use the techniques you
learn in here to build better, shorter, and easier to understand PySimpleGUI code.

If it feels like this layout section is too much too soon, then come back to this section after
you're learned about each Element. Whatever order you find the least confusing is the
best.

While you've not learned about Elements yet, it makes sense for this section to be up front so
that you'll have learned how to use the elements prior to learning how each element works. At
this point in your PySimpleGUI education, it is better for you to grasp time efficient ways of
working with Elements than what each Element does. By learning now how to assemble
Elements now, you'll have a good model to put the elements you learn into.

There are several aspects of PySimpleGUI that make it more "Pythonic" than other Python GUI
SDKs. One of the areas that is unique to PySimpleGUI is how a window's "layout" is defined,
specified or built. A window's "layout" is simply a list of lists of elements. As you've already
learned, these lists combine to form a complete window. This method of defining a window is
super-powerful because lists are core to the Python language as a whole and thus are very
easy to create and manupulate.

Think about that for a moment and compare/contrast with Qt, tkinter, etc. With PySimpleGUI
the location of your element in a matrix determines where that Element is shown in the
window. It's so simple and that makes it incredibly powerful. Want to switch a row in your GUI
that has text with the one below it that has an input element? No problem, swap the lines of
code and you're done.

Layouts were designed to be visual. The idea is for you to be able to envision how a window
will look by simplyh looking at the layout in the code. The CODE itself matches what is drawn
on the screen. PySimpleGUI is a cross between straight Python code and a visual GUI designer.

In the process of creating your window, you can manipulate these lists of elements without
having an impact on the elements or on your window. Until you perform a "layout" of the list,
they are nothing more than lists containing objects (they just happen to be your window's
elements).

Many times your window definition / layout will be a static, straightforward to create.

However, window layouts are not limited to being one of these staticly defined list of Elements.

Generated Layouts (For sure want to read if you have > 5
repeating elements/rows)

99/511

There are 5 specific techniques of generating layouts discussed in this section. They can be
used alone or in combination with each other.

1. Layout + Layout concatenation [[A]] + [[B]] = [[A], [B]]
2. Element Addition on Same Row [[A] + [B]] = [[A, B]]
3. List Comprehension to generate a row [A for x in range(10)] = [A,A,A,A,A...]
4. List Comprehension to generate multiple rows [[A] for x in range(10)] = [[A],[A],...]
5. User Defined Elements / Comound Elements

Example - List Comprehension To Concatenate Multiple Rows -
"To Do" List Example
Let's create a little layout that will be used to make a to-do list using PySimpleGUI.

Brute Force

import PySimpleGUI as sg

layout = [
 [sg.Text('1. '), sg.In(key=1)],
 [sg.Text('2. '), sg.In(key=2)],
 [sg.Text('3. '), sg.In(key=3)],
 [sg.Text('4. '), sg.In(key=4)],
 [sg.Text('5. '), sg.In(key=5)],
 [sg.Button('Save'), sg.Button('Exit')]
]

window = sg.Window('To Do List Example', layout)
event, values = window.read()

The output from this script was this window:

Take a moment and look at the code and the window that's generated. Are you able to look at
the layout and envision the Window on the screen?

100/511

Build By Concatenating Rows

The brute force method works great on a list that's 5 items long, but what if your todo list had
40 items on it. THEN what? Well, that's when we turn to a "generated" layout, a layout that is
generated by your code. Replace the layout= stuff from the previous example with this
definition of the layout.

import PySimpleGUI as sg

layout = []
for i in range(1,6):
 layout += [sg.Text(f'{i}. '), sg.In(key=i)],
layout += [[sg.Button('Save'), sg.Button('Exit')]]

window = sg.Window('To Do List Example', layout)
event, values = window.read()

It produces the exact same window of course. That's progress.... went from writing out every
row of the GUI to generating every row. If we want 48 items as suggested, change the
range(1,6) to range(1,48). Each time through the list another row is added onto the layout.

Create Several Rows Using List Comprehension

BUT, we're not done yet!

This is Python, we're using lists to build something up, so we should be looking at *list
comprehensions*. Let's change the for loop into a list comprehension. Recall that our for
loop was used to concatenate 6 rows into a layout.

layout = [[sg.Text(f'{i}. '), sg.In(key=i)] for i in range(1,6)]

Here we've moved the for loop to inside of the list definition (a list comprehension)

Concatenating Multiple Rows

We have our rows built using the list comprehension, now we just need the buttons. They can
be easily "tacked onto the end" by simple addition.

layout = [[sg.Text(f'{i}. '), sg.In(key=i)] for i in range(1,6)]
layout += [[sg.Button('Save'), sg.Button('Exit')]]

Anytime you have 2 layouts, you can concatenate them by simple addition. Make sure your
layout is a "list of lists" layout. In the above example, we know the first line is a generated
layout of the input rows. The last line adds onto the layout another layout... note the format
being [[]].

This button definition is an entire layout, making it possible to add to our list comprehension

101/511

[[sg.Button('Save'), sg.Button('Exit')]]

It's quite readable code. The 2 layouts line up visually quite well.

But let's not stop there with compressing the code. How about removing that += and instead
change the layout into a single line with just a + between the two sets of row.

Doing this concatenation on one line, we end up with this single statement that creates the
entire layout for the GUI:

layout = [[sg.Text(f'{i}. '), sg.In(key=i)] for i in range(1,6)] + [[sg.Button('Save'), sg.Button('Exit')]]

Final "To Do List" Program

And here we have our final program... all 4 lines.

import PySimpleGUI as sg

layout = [[sg.Text(f'{i}. '), sg.In(key=i)] for i in range(1,6)] + [[sg.Button('Save'), sg.Button('Exit')]]

window = sg.Window('To Do List Example', layout)

event, values = window.read()

If you really wanted to crunch things down, you can make it a 2 line program (an import and 1
line of code) by moving the layout into the call to Window

import PySimpleGUI as sg

event, values = sg.Window('To Do List Example', layout=[[sg.Text(f'{i}. '), sg.In(key=i)] for i in range(1,6)] +
[[sg.Button('Save'), sg.Button('Exit')]]).Read()

Example - List Comprehension to Build Rows - Table Simulation -
Grid of Inputs
In this example we're building a "table" that is 4 wide by 10 high using Input elements

The end results we're seeking is something like this:

102/511

HEADER 1 HEADER 2 HEADER 3 HEADER 4
INPUT INPUT INPUT INPUT
INPUT INPUT INPUT INPUT
INPUT INPUT INPUT INPUT
INPUT INPUT INPUT INPUT
INPUT INPUT INPUT INPUT
INPUT INPUT INPUT INPUT
INPUT INPUT INPUT INPUT
INPUT INPUT INPUT INPUT
INPUT INPUT INPUT INPUT
INPUT INPUT INPUT INPUT

Once the code is completed, here is how the result will appear:

We're going to be building each row using a list comprehension and we'll build the table by
concatenating rows using another list comprehension. That's a list comprehension that goes
across and another list comprehension that goes down the layout, adding one row after
another.

Building the Header

First let's build the header. There are 2 concepts to notice here:

import PySimpleGUI as sg

headings = ['HEADER 1', 'HEADER 2', 'HEADER 3','HEADER 4']
header = [[sg.Text(' ')] + [sg.Text(h, size=(14,1)) for h in headings]]

There are 2 things in this code to note 1. The list comprehension that makes the heading
elements 2. The spaces added onto the front

Let's start with the headers themselves.

103/511

This is the code that makes a row of Text Elements containing the text for the headers. The
result is a list of Text Elements, a row.

[sg.Text(h, size=(14,1)) for h in headings]

Then we add on a few spaces to shift the headers over so they are centered over their
columns. We do this by simply adding a Text Element onto the front of that list of headings.

header = [[sg.Text(' ')] + [sg.Text(h, size=(14,1)) for h in headings]]

This header variable is a layout with 1 row that has a bunch of Text elements with the
headings.

Building the Input Elements

The Input elements are arranged in a grid. To do this we will be using a double list
comprehension. One will build the row the other will add the rows together to make the grid.
Here's the line of code that does that:

input_rows = [[sg.Input(size=(15,1), pad=(0,0)) for col in range(4)] for row in range(10)]

This portion of the statement makes a single row of 4 Input Elements

[sg.Input(size=(15,1), pad=(0,0)) for col in range(4)]

Next we take that list of Input Elements and make as many of them as there are rows, 10 in
this case. We're again using Python's awesome list comprehensions to add these rows
together.

input_rows = [[sg.Input(size=(15,1), pad=(0,0)) for col in range(4)] for row in range(10)]

The first part should look familiar since it was just discussed as being what builds a single row.
To make the matrix, we simply take that single row and create 10 of them, each being a list.

Putting it all together

Here is our final program that uses simple addition to add the headers onto the top of the
input matrix.

104/511

import PySimpleGUI as sg

headings = ['HEADER 1', 'HEADER 2', 'HEADER 3','HEADER 4']
header = [[sg.Text(' ')] + [sg.Text(h, size=(14,1)) for h in headings]]

input_rows = [[sg.Input(size=(15,1), pad=(0,0)) for col in range(4)] for row in range(10)]

layout = header + input_rows

window = sg.Window('Table Simulation', layout, font='Courier 12')
event, values = window.read()

User Defined Elements / Compound Elements
"User Defined Elements" and "Compound Elements" are one or more PySimpleGUI Elements
that are wrapped in a function definition. In a layout, they have the appearance of being a
custom elements of some type.

User Defined Elements are particularly useful when you set a lot of parameters on an element
that you use over and over in your layout.

Example - A Grid of Buttons for Calculator App

Let's say you're making a calculator application with buttons that have these settings:

font = Helvetica 20
size = 5,1
button color = white on blue

The code for one of these buttons is:

sg.Button('1', button_color=('white', 'blue'), size=(5, 1), font=("Helvetica", 20))

If you have 6 buttons across and 5 down, your layout will have 30 of these lines of text.

One row of these buttons could be written:

 [sg.Button('1', button_color=('white', 'blue'), size=(5, 1), font=("Helvetica", 20)),
 sg.Button('2', button_color=('white', 'blue'), size=(5, 1), font=("Helvetica", 20)),
 sg.Button('3', button_color=('white', 'blue'), size=(5, 1), font=("Helvetica", 20)),
 sg.Button('log', button_color=('white', 'blue'), size=(5, 1), font=("Helvetica", 20)),
 sg.Button('ln', button_color=('white', 'blue'), size=(5, 1), font=("Helvetica", 20)),
 sg.Button('-', button_color=('white', 'blue'), size=(5, 1), font=("Helvetica", 20))],

By using User Defined Elements, you can significantly shorten your layouts. Let's call our
element CBtn . It would be written like this:

def CBtn(button_text):
 return sg.Button(button_text, button_color=('white', 'blue'), size=(5, 1), font=("Helvetica", 20))

105/511

Using your new CBtn Element, you could rewrite the row of buttons above as:

[CBtn('1'), CBtn('2'), CBtn('3'), CBtn('log'), CBtn('ln'), CBtn('-')],

See the tremendous amount of code you do not havew to write! USE this construct any time
you find yourself copying an element many times.

But let's not stop there.

Since we've been discussing list comprehensions, let's use them to create this row. The way to
do that is to make a list of the symbols that go across the row make a loop that steps through
that list. The result is a list that looks like this:

[CBtn(t) for t in ('1','2','3', 'log', 'ln', '-')],

That code produces the same list as this one we created by hand:

[CBtn('1'), CBtn('2'), CBtn('3'), CBtn('log'), CBtn('ln'), CBtn('-')],

Compound Elements

Just like a Button can be returned from a User Defined Element, so can multiple Elements.

Going back to the To-Do List example we did earlier, we could have defined a User Defined
Element that represented a To-Do Item and this time we're adding a checkbox. A single line
from this list will be:

The item # (a Text Element)
A Checkbox Element to indicate completed
An Input Element to type in what to do

The definition of our User Element is this ToDoItem function. It is a single User Element that is
a combination of 3 PySimpleGUI Elements.

def ToDoItem(num):
 return [sg.Text(f'{num}. '), sg.CBox(''), sg.In()]

This makes creating a list of 5 to-do items downright trivial when combined with the list
comprehension techniques we learned earlier. Here is the code required to create 5 entries in
our to-do list.

layout = [ToDoItem(x) for x in range(1,6)]

We can then literally add on the buttons

layout = [ToDoItem(x) for x in range(1,6)] + [[sg.Button('Save'), sg.Button('Exit')]]

And here is our final program

106/511

import PySimpleGUI as sg

def ToDoItem(num):
 return [sg.Text(f'{num}. '), sg.CBox(''), sg.In()]

layout = [ToDoItem(x) for x in range(1,6)] + [[sg.Button('Save'), sg.Button('Exit')]]

window = sg.Window('To Do List Example', layout)
event, values = window.read()

And the window it creates looks like this:

Elements
You will find information on Elements and all other classes and functions are located near the
end of this manual. They are in 1 large section of the readme, in alphabetical order for easy
lookups. This section's discussion of Elements is meant to teach you how they work. The other
section has detailed call signatures and parameter definitions.

"Elements" are the building blocks used to create windows. Some GUI APIs use the term
"Widget" to describe these graphic elements.

Text
Single Line Input
Buttons including these types:

File Browse
Folder Browse
Calendar picker
Date Chooser
Read window
Close window ("Button" & all shortcut buttons)
Realtime

Checkboxes

107/511

Radio Buttons
Listbox
Slider
Multi-line Text Input/Output
Multi-line Text Output (not on tkinter version)
Scroll-able Output
Vertical Separator
Progress Bar
Option Menu
Menu
ButtonMenu
Frame
Column
Graph
Image
Table
Tree
Tab, TabGroup
StatusBar
Pane
Stretch (Qt only)
Sizer (plain PySimpleGUI only)

Common Element Parameters
Some parameters that you will see on almost all Element creation calls include:

key - Used with window.FindElement and with return values
tooltip - Hover your mouse over the elemnt and you'll get a popup with this text
size - (width, height) - usually measured in characters-wide, rows-high. Sometimes they
mean pixels
font - specifies the font family, size, etc
colors - Color name or #RRGGBB string
pad - Amount of padding to put around element
enable_events - Turns on the element specific events
visible - Make elements appear and disappear

Tooltip

Tooltips are text boxes that popup next to an element if you hold your mouse over the top of
it. If you want to be extra kind to your window's user, then you can create tooltips for them by
setting the parameter tooltip to some text string. You will need to supply your own line

108/511

breaks / text wrapping. If you don't want to manually add them, then take a look at the
standard library package textwrap .

Tooltips are one of those "polish" items that really dress-up a GUI and show's a level of
sophistication. Go ahead, impress people, throw some tooltips into your GUI. You can change
the color of the background of the tooltip on the tkinter version of PySimpleGUI by setting
TOOLTIP_BACKGROUND_COLOR to the color string of your choice. The default value for the

color is:

TOOLTIP_BACKGROUND_COLOR = "#ffffe0"

Size

Info on setting default element sizes is discussed in the Window section above.

Specifies the amount of room reserved for the Element. For elements that are character
based, such a Text, it is (# characters, # rows). Sometimes it is a pixel measurement such as
the Image element. And sometimes a mix like on the Slider element (characters long by pixels
wide).

Some elements, Text and Button, have an auto-size setting that is on by default. It will size
the element based on the contents. The result is that buttons and text fields will be the size of
the string creating them. You can turn it off. For example, for Buttons, the effect will be that all
buttons will be the same size in that window.

Element Sizes - Non-tkinter Ports (Qt, WxPython, Web)

In non-tkinter ports you can set the specific element sizes in 2 ways. One is to use the normal
size parameter like you're used to using. This will be in characters and rows.

The other way is to use a new parameter, size_px . This parameter allows you to specify the
size directly in pixels. A setting of size_px=(300,200) will create an Element that is 300 x 200
pixels.

Additionally, you can also indicate pixels using the size parameter, if the size exceeds the
threshold for conversion. What does that mean? It means if your width is > 20
(DEFAULT_PIXEL_TO_CHARS_CUTOFF), then it is assumed you're talking pixels, not characters.
However, some of the "normally large" Elements have a cutoff value of 100. These include, for
example, the Multline and Output elements.

If you're curious about the math used to do the character to pixels conversion, it's quite crude,
but functional. The conversion is completed with the help of this variable:

DEFAULT_PIXELS_TO_CHARS_SCALING = (10,26)

109/511

The conversion simply takes your size[0] and multiplies by 10 and your size[1] and
multiplies it by 26.

Colors

A string representing color. Anytime colors are involved, you can specify the tkinter color
name such as 'lightblue' or an RGB hex value '#RRGGBB'. For buttons, the color parameter is a
tuple (text color, background color)

Anytime colors are written as a tuple in PySimpleGUI, the way to figure out which color is the
background is to replace the "," with the word "on". ('white', 'red') specifies a button that is
"white on red". Works anywhere there's a color tuple.

Pad

The amount of room around the element in pixels. The default value is (5,3) which means
leave 5 pixels on each side of the x-axis and 3 pixels on each side of the y-axis. You can change
this on a global basis using a call to SetOptions, or on an element basis.

If you want more pixels on one side than the other, then you can split the number into 2
number. If you want 200 pixels on the left side, and 3 pixels on the right, the pad would be
((200,3), 3). In this example, only the x-axis is split.

Font

Specifies the font family, size, and style. Font families on Windows include: * Arial * Courier *
Comic, * Fixedsys * Times * Verdana * Helvetica (the default I think)

The fonts will vary from system to system, however, Tk 8.0 automatically maps Courier,
Helvetica and Times to their corresponding native family names on all platforms. Also, font
families cannot cause a font specification to fail on Tk 8.0 and greater.

If you wish to leave the font family set to the default, you can put anything not a font name as
the family. The PySimpleGUI Demo programs and documentation use the family 'Any' to
demonstrate this fact.. You could use "default" if that's more clear to you.

There are 2 formats that can be used to specify a font... a string, and a tuple Tuple - (family,
size, styles) String - "Family Size Styles"

To specify an underlined, Helvetica font with a size of 15 the values: ('Helvetica', 15, 'underline
italics') 'Helvetica 15 underline italics'

Key

110/511

If you are going to do anything beyond the basic stuff with your GUI, then you need to
understand keys. Keys are a way for you to "tag" an Element with a value that will be used to
identify that element. After you put a key in an element's definition, the values returned from
Read will use that key to tell you the value. For example, if you have an input field:

Input(key='mykey')

And your read looks like this: event, values = Read()

Then to get the input value from the read it would be: values['mykey']

You also use the same key if you want to call Update on an element. Please see the section
below on Updates to understand that usage.

Keys can be ANYTHING. Let's say you have a window with a grid of input elements. You could
use their row and column location as a key (a tuple)

key=(row, col)

Then when you read the values variable that's returned to you from calling Window.Read() ,
the key in the values variable will be whatever you used to create the element. In this case
you would read the values as: values[(row, col)]

Most of the time they are simple text strings. In the Demo Programs, keys are written with this
convention: _KEY_NAME_ (underscore at beginning and end with all caps letters) or '-
KEY_NAME-. You don't have to follow that convention. It's used so that you can quickly spot
when a key is being used.

To find an element's key, access the member variable .Key for the element. This assumes
you've got the element in a variable already.

text_elem = sg.Text('', key='-TEXT-')

the_key = text_elem.Key

Visible

Beginning in version 3.17 you can create Elements that are initially invisible that you can later
make visible.

To create an invisible Element, place the element in the layout like you normally would and
add the parameter

visible=False .

Later when you want to make that Element visible you simply call the Element's Update
method and pass in the parameter visible=True

111/511

This feature works best on Qt, but does work on the tkinter version as well. The visible
parameter can also be used with the Column and Frame "container" Elements.

Note - Tkiner elements behave differently than Qt elements in how they arrange themselves
when going from invisible to visible.

Tkinet elements tend to STACK themselves.

One workaround is to place the element in a Column with other elements on its row. This will
hold the place of the row it is to be placed on. It will move the element to the end of the row
however.

If you want to not only make the element invisible, on tkinter you can call `Element.

Qt elements tend to hold their place really well and the window resizes itself nicely. It is more
precise and less klunky.

Shortcut Functions / Multiple Function Names
Perhaps not the best idea, but one that's done none the less is the naming of methods and
functions. Some of the more "Heavily Travelled Elements" (and methods/functions) have
"shortcuts".

In other words, I am lazy and don't like to type. The result is multiple ways to do exactly the
same thing. Typically, the Demo Programs and other examples use the full name, or at least a
longer name. Thankfully PyCharm will show you the same documentation regardless which
you use.

This enables you to code much quicker once you are used to using the SDK. The Text Element,
for example, has 3 different names Text , Txt or T . InputText can also be written Input or
In .

The shortcuts aren't limited to Elements. The Window method Window.FindElement can be
written as Window.Element because it's such a commonly used function. BUT,even that has
now been shortened.

It's an ongoing thing. If you don't stay up to date and one of the newer shortcuts is used, you'll
need to simply rename that shortcut in the code. For examples Replace sg.T with sg.Text if
your version doesn't have sg.T in it.

Text Element | T == Txt == Text
Basic Element. It displays text.

112/511

layout = [
 [sg.Text('This is what a Text Element looks like')],
]

When creating a Text Element that you will later
update, make sure you reserve enough characters
for the new text. When a Text Element is created
without a size parameter, it is created to exactly fit
the characters provided.

With proportional spaced fonts (normally the default) the pixel size of one set of characters
will differ from the pixel size of a different set of characters even though the set is of the same
number of characters. In other words, not all letters use the same number of pixels. Look at
the text you're reading right now and you will see this. An "i" takes up a less space then an "A".

Window.FindElement(key) Shortcut Window[key]
There's been a fantastic leap forward in making PySimpleGUI code more compact.

Instead of writing:

window.FindElement(key).Update(new_value)
 ```

You can now write it as:

```python
window[key].Update(new_value)
 ```

This change has been released to PyPI for PySimpleGUI

MANY Thanks is owed to the person that suggested and showed me how to do this.  It's an incredible find.

## `Element.Update()` ->  `Element()` shortcut

This has to be one of the strangest syntactical contructs I've ever written.  

It is best used in combination with `FindElement` (see prior section on how to shortcut `FindElement`).  

Normally to change an element, you "find" it, then call its `update` method.  The code usually looks like this, 
as you saw in the previous section:

```python
window[key].update(new_value)

The code can be further compressed by removing the .update characters, resulting in this
very compact looking call:

113/511

window[key](new_value)

Yes, that's a valid statement in Python.

What's happening is that the element itself is being called. You can also writing it like this:

elem = sg.Text('Some text', key='-TEXT-')
elem('new text value')

Side note - you can also call your window variable directly. If you "call" it it will actually call
Window.read .

window = sg.Window(....)
event, values = window()

window = sg.Window(....)
event, values = window.read()

It is confusing looking however so when used, it might be a good idea to write a comment at
the end of the statement to help out the poor beginner programmer coming along behind you.

Because it's such a foreign construct that someone with 1 week of Python classes will not
reconize, the demos will continue to use the .update method.

It does not have to be used in conjuction with FindElement . The call works on any previously
made Element. Sometimes elements are created, stored into a variable and then that variable
is used in the layout. For example.

graph_element = sg.Graph(...... lots of parms)

layout = [[graph_element]]
.
.
.
graph_element(background_color='blue')

Hopefully this isn't too confusing. Note that the methods these shortcuts replace will not be
removed. You can continue to use the old constructs without changes.

Fonts

Already discussed in the common parameters section. Either string or a tuple.

Color in PySimpleGUI are in one of two formats - color name or RGB
value.

Individual colors are specified using either the color names as defined in tkinter or an RGB
114/511

string of this format:

"#RRGGBB" or "darkblue"

auto_size_text
A True value for auto_size_text , when placed on Text Elements, indicates that the width of
the Element should be shrunk do the width of the text. The default setting is True. You need to
remember this when you create Text elements that you are using for output.

Text('', key='_TXTOUT_) will create a Text Element that has 0 length. If you try to output a
string that's 5 characters, it won't be shown in the window because there isn't enough room.
The remedy is to manually set the size to what you expect to output

Text('', size=(15,1), key='_TXTOUT_) creates a Text Element that can hold 15 characters.

Chortcut functions

The shorthand functions for Text are Txt and T

Events enable_events
If you set the parameter enable_events then you will get an event if the user clicks on the
Text.

Multiline Element
This Element doubles as both an input and output Element.

layout = [[sg.Multiline('This is what a Multi-line Text Element looks like', size=(45,5))]]

Text Input Element | InputText == Input == In
layout = [[sg.InputText('Default text')]]

115/511

Note about the do_not_clear parameter

This used to really trip people up, but don't think so anymore. The do_not_clear parameter is
initialized when creating the InputText Element. If set to False, then the input field's contents
will be erased after every Window.Read() call. Use this setting for when your window is an
"Input Form" type of window where you want all of the fields to be erased and start over again
every time.

Combo Element | Combo == InputCombo == DropDown ==
Drop
Also known as a drop-down list. Only required parameter is the list of choices. The return
value is a string matching what's visible on the GUI.

layout = [[sg.Combo(['choice 1', 'choice 2'])]]

Listbox Element
The standard listbox like you'll find in most GUIs. Note that the return values from this
element will be a list of results, not a single result. This is because the user can select more
than 1 item from the list (if you set the right mode).

layout = [[sg.Listbox(values=['Listbox 1', 'Listbox 2', 'Listbox 3'], size=(30, 6))]]

ListBoxes can cause a window to return from a Read call. If the flag enable_events is set, then
when a user makes a selection, the Read immediately returns.

Another way ListBoxes can cause Reads to return is if the flag bind_return_key is set. If True,
then if the user presses the return key while an entry is selected, then the Read returns. Also, if
this flag is set, if the user double-clicks an entry it will return from the Read.

116/511

Slider Element
Sliders have a couple of slider-specific settings as well as appearance settings. Examples
include the orientation and range settings.

layout = [[sg.Slider(range=(1,500),
 default_value=222,
 size=(20,15),
 orientation='horizontal',
 font=('Helvetica', 12))]]

Qt Sliders

There is an important difference between Qt and tkinter sliders. On Qt, the slider values must
be integer, not float. If you want your slider to go from 0.1 to 1.0, then make your slider go
from 1 to 10 and divide by 10. It's an easy math thing to do and not a big deal. Just deal with
it.... you're writing software after all. Presumably you know how to do these things. ;-)

Radio Button Element
Creates one radio button that is assigned to a group of radio buttons. Only 1 of the buttons in
the group can be selected at any one time.

layout = [
 [sg.Radio('My first Radio!', "RADIO1", default=True),
 sg.Radio('My second radio!', "RADIO1")]
]

Checkbox Element | CBox == CB == Check
Checkbox elements are like Radio Button elements. They return a bool indicating whether or
not they are checked.

layout = [[sg.Checkbox('My first Checkbox!', default=True), sg.Checkbox('My second Checkbox!')]]

117/511

Spin Element
An up/down spinner control. The valid values are passed in as a list.

layout = [[sg.Spin([i for i in range(1,11)], initial_value=1), sg.Text('Volume level')]]

Image Element
Images can be placed in your window provide they are in PNG, GIF, PPM/PGM format. JPGs
cannot be shown because tkinter does not naively support JPGs. You can use the Python
Imaging Library (PIL) package to convert your image to PNG prior to calling PySimpleGUI if
your images are in JPG format.

layout = [
 [sg.Image(r'C:\PySimpleGUI\Logos\PySimpleGUI_Logo_320.png')],
]

You can specify an animated GIF as an image and can animate the GIF by calling
UpdateAnimation . Exciting stuff!

118/511

You can call the method without setting the
time_between_frames value and it will show a frame and

immediately move on to the next frame. This enables you to
do the inter-frame timing.

Button Element
MAC USERS - Macs suck when it comes to tkinter and button colors. It sucks so badly with
colors that the LookAndFeel call is disabled. You cannot change button colors for Macs. You're
stuck with the system default color if you are using the tkinter version of PySimpleGUI. The Qt
version does not have this issue.

Buttons are the most important element of all! They cause the majority of the action to
happen. After all, it's a button press that will get you out of a window, whether it be Submit or
Cancel, one way or another a button is involved in all windows. The only exception is to this is
when the user closes the window using the "X" in the upper corner which means no button
was involved.

The Types of buttons include: * Folder Browse * File Browse * Files Browse * File SaveAs * File
Save * Close window (normal button) * Read window * Realtime * Calendar Chooser * Color
Chooser

Close window - Normal buttons like Submit, Cancel, Yes, No, do NOT close the window... they
used to. Now to close a window you need to use a CloseButton / CButton.

Folder Browse - When clicked a folder browse dialog box is opened. The results of the Folder
Browse dialog box are written into one of the input fields of the window.

File Browse - Same as the Folder Browse except rather than choosing a folder, a single file is
chosen.

Calendar Chooser - Opens a graphical calendar to select a date.

Color Chooser - Opens a color chooser dialog

Read window - This is a window button that will read a snapshot of all of the input fields, but
does not close the window after it's clicked.

Realtime - This is another async window button. Normal button clicks occur after a button's
click is released. Realtime buttons report a click the entire time the button is held down.

Most programs will use a combination of shortcut button calls (Submit, Cancel, etc), normal
Buttons which leave the windows open and CloseButtons that close the window when clicked.

119/511

Sometimes there are multiple names for the same function. This is simply to make the job of
the programmer quicker and easier. Or they are old names that are no longer used but kept
around so that existing programs don't break.

The 4 primary windows of PySimpleGUI buttons and their names are:

1. Button = ReadButton = RButton = ReadFormButton (Use Button , others are old
methods)

2. CloseButton = CButton
3. RealtimeButton
4. DummyButton

You will find the long-form names in the older programs. ReadButton for example.

In Oct 2018, the definition of Button changed. Previously Button would CLOSE the window
when clicked. It has been changed so the Button calls will leave the window open in exactly the
same way as a ReadButton. They are the same calls now. To enables windows to be closed
using buttons, a new button was added... CloseButton or CButton .

Your PySimpleGUI program is most likely going to contain only Button calls. The others are
generally not foundin user code.

The most basic Button element call to use is Button

layout = [[sg.Button('Ok'), sg.Button('Cancel')]]

You will rarely see these 2 buttons in particular written this way. Recall
that PySimpleGUI is focused on YOU (which generally directly means....
less typing). As a result, the code for the above window is normally
written using shortcuts found in the next section.

You will typically see this instead of calls to Button :

layout = [[sg.Ok(), sg.Cancel()]]

In reality Button is in fact being called on your behalf. Behind the scenes, sg.Ok and
sg.Cancel call Button with the text set to Ok and Cancel and returning the results that

then go into the layout. If you were to print the layout it will look identical to the first layout
shown that has Button shown specifically in the layout.

Button Element Shortcuts

These Pre-made buttons are some of the most important elements of all because they are
used so much. They all basically do the same thing, set the button text to match the
function name and set the parameters to commonly used values. If you find yourself

120/511

needing to create a custom button often because it's not on this list, please post a request on
GitHub. . They include:

OK
Ok
Submit
Cancel
Yes
No
Exit
Quit
Help
Save
SaveAs
Open

"Chooser" Buttons

These buttons are used to show dialog boxes that choose something like a filename, date,
color, etc. that are filled into an InputText Element (or some other "target".... see below
regarding targets)

CalendarButton
ColorChooserButton
FileBrowse
FilesBrowse
FileSaveAs
FolderBrowse

IMPORT NOTE ABOUT SHORTCUT BUTTONS Prior to release 3.11.0, these buttons closed the
window. Starting with 3.11 they will not close the window. They act like RButtons (return the
button text and do not close the window)

If you are having trouble with these buttons closing your window, please check your installed
version of PySimpleGUI by typing pip list at a command prompt. Prior to 3.11 these buttons
close your window.

Using older versions, if you want a Submit() button that does not close the window, then you
would instead use RButton('Submit'). Using the new version, if you want a Submit button that
closes the window like the sold Submit() call did, you would write that as CloseButton('Submit')
or CButton('Submit')

Button targets

121/511

The FileBrowse , FolderBrowse , FileSaveAs , FilesSaveAs , CalendarButton ,
ColorChooserButton buttons all fill-in values into another element located on the window. The

target can be a Text Element or an InputText Element or the button itself. The location of the
element is specified by the target variable in the function call.

The Target comes in two forms. 1. Key 2. (row, column)

Targets that are specified using a key will find its target element by using the target's key
value. This is the "preferred" method.

If the Target is specified using (row, column) then it utilizes a grid system. The rows in your GUI
are numbered starting with 0. The target can be specified as a hard coded grid item or it can
be relative to the button.

The (row, col) targeting can only target elements that are in the same "container". Containers
are the Window, Column and Frame Elements. A File Browse button located inside of a
Column is unable to target elements outside of that Column.

The default value for target is (ThisRow, -1) . ThisRow is a special value that tells the GUI to
use the same row as the button. The Y-value of -1 means the field one value to the left of the
button. For a File or Folder Browse button, the field that it fills are generally to the left of the
button is most cases. (ThisRow, -1) means the Element to the left of the button, on the same
row.

If a value of (None, None) is chosen for the target, then the button itself will hold the
information. Later the button can be queried for the value by using the button's key.

Let's examine this window as an example:

The InputText element is located at (1,0)... row 1, column 0. The Browse button is located at
position (2,0). The Target for the button could be any of these values:

Target = (1,0)
Target = (-1,0)

The code for the entire window could be:

layout = [[sg.T('Source Folder')],
 [sg.In()],
 [sg.FolderBrowse(target=(-1, 0)), sg.OK()]]

122/511

or if using keys, then the code would be:

layout = [[sg.T('Source Folder')],
 [sg.In(key='input')],
 [sg.FolderBrowse(target='input'), sg.OK()]]

See how much easier the key method is?

Invisible Targets

One very handy trick is to make your target invisible. This will remove the ability to edit the
chosen value like you normally would be able to with an Input Element. It's a way of making
things look cleaner, less cluttered too perhaps.

Save & Open Buttons

There are 4 different types of File/Folder open dialog box available. If you are looking for a file
to open, the FileBrowse is what you want. If you want to save a file, SaveAs is the button. If
you want to get a folder name, then FolderBrowse is the button to use. To open several files
at once, use the FilesBrowse button. It will create a list of files that are separated by ';'

123/511

124/511

Calendar Buttons

These buttons pop up a calendar chooser window. The chosen date is returned as a string.

Color Chooser Buttons

These buttons pop up a standard color chooser window. The result is returned as a tuple. One
of the returned values is an RGB hex representation.

125/511

Custom Buttons

Not all buttons are created equal. A button that closes a window is different that a button that
returns from the window without closing it. If you want to define your own button, you will
generally do this with the Button Element Button , which closes the window when clicked.

layout = [[sg.Button('My Button')]]

All buttons can have their text changed by changing the button_text
parameter in the button call. It is this text that is returned when a window
is read. This text will be what tells you which button was clicked. However,
you can also use keys on your buttons so that they will be unique. If only
the text were used, you would never be able to have 2 buttons in the
same window with the same text.

layout = [[sg.Button('My Button', key='_BUTTON_KEY_')]]

With this layout, the event that is returned from a Window.Read() call when the button is
clicked will be " _BUTTON_KEY_ "

Button Images

Now this is an exciting feature not found in many simplified packages.... images on buttons!
You can make a pretty spiffy user interface with the help of a few button images.

Your button images need to be in PNG or GIF format. When you make a button with an image,
set the button background to the same color as the background. There's a button color
TRANSPARENT_BUTTON that you can set your button color to in order for it to blend into the
background. Note that this value is currently the same as the color as the default system

126/511

background on Windows. If you want to set the button background color to the current system
default, use the value COLOR_SYSTEM_DEFAULT as the background color.

This example comes from the Demo Media Player.py example program. Because it's a non-
blocking button, it's defined as RButton . You also put images on blocking buttons by using
Button .

sg.Button('Restart Song', button_color=sg.TRANSPARENT_BUTTON,
 image_filename=image_restart, image_size=(50, 50), image_subsample=2, border_width=0)

Three parameters are used for button images.

image_filename - Filename. Can be a relative path
image_size - Size of image file in pixels
image_subsample - Amount to divide the size by. 2 means your image will be 1/2 the size. 3 means 1/3

Here's an example window made with button images.

You'll find the source code in the file Demo Media Player. Here is what the button calls look
like to create media player window ```python sg.Button('Pause',
button_color=sg.TRANSPARENT_BUTTON, image_filename=image_pause, image_size=(50, 50),
image_subsample=2, border_width=0)

127/511

Experimentation is sometimes required for these concepts to really sink in.

Realtime Buttons

Normally buttons are considered "clicked" when the mouse button is let UP after a downward click on the
button. What about times when you need to read the raw up/down button values. A classic example for this
is a robotic remote control. Building a remote control using a GUI is easy enough. One button for each of
the directions is a start. Perhaps something like this:

![robot remote](https://user-images.githubusercontent.com/13696193/44959958-ff9b7000-
aec4-11e8-99ea-7450926409be.jpg)

This window has 2 button types. There's the normal "Read Button" (Quit) and 4 "Realtime Buttons".

Here is the code to make, show and get results from this window:

```python
import PySimpleGUI as sg

gui_rows = [[sg.Text('Robotics Remote Control')],
            [sg.T(' '  * 10), sg.RealtimeButton('Forward')],
            [sg.RealtimeButton('Left'), sg.T(' '  * 15), sg.RealtimeButton('Right')],
            [sg.T(' '  * 10), sg.RealtimeButton('Reverse')],
            [sg.T('')],
            [sg.Quit(button_color=('black', 'orange'))]
            ]

window = sg.Window('Robotics Remote Control', gui_rows)

#
# Some place later in your code...
# You need to perform a Read or Refresh call on your window every now and then or
# else it will apprear as if the program has locked up.
#
# your program's main loop
while (True):
    # This is the code that reads and updates your window
    event, values = window.Read(timeout=50)
    print(event)
    if event in ('Quit', None):
        break

window.Close()  # Don't forget to close your window!

This loop will read button values and print them. When one of the Realtime buttons is clicked,
the call to window.Read  will return a button name matching the name on the button that was
depressed or the key if there was a key assigned to the button. It will continue to return values
as long as the button remains depressed. Once released, the Read will return timeout events
until a button is again clicked.

128/511



File Types The FileBrowse  & SaveAs  buttons have an additional setting named file_types .
This variable is used to filter the files shown in the file dialog box. The default value for this
setting is

FileTypes=(("ALL Files", "*.*"),)

This code produces a window where the Browse button only shows files of type .TXT

layout =  [[sg.In() ,sg.FileBrowse(file_types=(("Text Files", "*.txt"),))]]

NOTE - Mac users will not be able to use the file_types parameter. tkinter has a bug on Macs
that will crash the program is a file_type is attempted so that feature had to be removed. Sorry
about that!

The ENTER key The ENTER key is an important part of data entry for windows. There's a long
tradition of the enter key being used to quickly submit windows. PySimpleGUI implements this
by tying the ENTER key to the first button that closes or reads a window.

The Enter Key can be "bound" to a particular button so that when the key is pressed, it causes
the window to return as if the button was clicked. This is done using the bind_return_key
parameter in the button calls. If there are more than 1 button on a window, the FIRST button
that is of type Close window or Read window is used. First is determined by scanning the
window, top to bottom and left to right.

The ButtonMenu element produces a unique kind of effect. It's a button, that when clicked,
shows you a menu. It's like clicking one of the top-level menu items on a MenuBar. As a result,
the menu definition take the format of a single menu entry from a normal menu definition. A
normal menu definition is a list of lists. This definition is one of those lists.

 ['Menu', ['&Pause Graph', 'Menu item::optional_key']]

The very first string normally specifies what is shown on the menu bar. In this case, the value
is not used. You set the text for the button using a different parameter, the button_text
parm.

One use of this element is to make a "fake menu bar" that has a colored background. Normal
menu bars cannot have their background color changed. Not so with ButtonMenus.

129/511



Return values for ButtonMenus are sent via the return values dictionary. If a selection is made,
then an event is generated that will equal the ButtonMenu's key value. Use that key value to
look up the value selected by the user. This is the same mechanism as the Menu Bar Element,
but differs from the pop-up (right click) menu.

VerticalSeparator Element
This element has limited usefulness and is being included more for completeness than
anything else. It will draw a line between elements.

It works best when placed between columns or elements that span multiple rows. If on a
"normal" row with elements that are only 1 row high, then it will only span that one row.

VerticalSeparator(pad=None)

HorizontalSeparator Element
In PySimpleGUI, the tkinter port, there is no HorizontalSeparator  Element. One will be added
as a "stub" so that code is portable. It will likely do nothing just like the Stretch  Element.

An easy way to get a horizontal line in PySimpleGUI is to use a Text  Element that contains a
line of underscores

sg.Text('_'*30)             

ProgressBar Element
The ProgressBar  element is used to build custom Progress Bar windows. It is HIGHLY
recommended that you use OneLineProgressMeter that provides a complete progress meter
solution for you. Progress Meters are not easy to work with because the windows have to be
non-blocking and they are tricky to debug.

The easiest way to get progress meters into your code is to use the OneLineProgressMeter
API. This consists of a pair of functions, OneLineProgressMeter  and
OneLineProgressMeterCancel . You can easily cancel any progress meter by calling it with the

130/511



current value = max value. This will mark the meter as expired and close the window. You've
already seen OneLineProgressMeter calls presented earlier in this readme.

sg.OneLineProgressMeter('My Meter', i+1, 1000,  'key', 'Optional message')

The return value for OneLineProgressMeter  is: True  if meter updated correctly False  if user
clicked the Cancel button, closed the window, or vale reached the max value.

Progress Meter in Your window

Another way of using a Progress Meter with PySimpleGUI is to build a custom window with a
ProgressBar  Element in the window. You will need to run your window as a non-blocking

window. When you are ready to update your progress bar, you call the UpdateBar  method for
the ProgressBar  element itself.

import PySimpleGUI as sg

layout = [[sg.Text('A custom progress meter')],
          [sg.ProgressBar(1000, orientation='h', size=(20, 20), key='progressbar')],
          [sg.Cancel()]]

window = sg.Window('Custom Progress Meter', layout)
progress_bar = window['progressbar']

for i in range(1000):
    
    event, values = window.read(timeout=10)
    if event == 'Cancel'  or event is None:
        break
  
    progress_bar.UpdateBar(i + 1)

window.close()

Output Element
The Output Element is a re-direction of Stdout.

131/511



If you are looking for a way to quickly add the ability to show scrolling text within your window,
then adding an Output  Element is about as quick and easy as it gets.

Anything "printed" will be displayed in this element. This is the "trivial" way to show
scrolling text in your window. It's as easy as dropping an Output Element into your window
and then calling print as much as you want. The user will see a scrolling area of text inside
their window.

IMPORTANT You will NOT see what you print  until you call either window.Read  or
window.Refresh . If you want to immediately see what was printed, call window.Refresh()

immediately after your print statement.

Output(size=(80,20))

Here's a complete solution for a chat-window using an Output Element. To display data that's
received, you would to simply "print" it and it will show up in the output area. You'll find this
technique used in several Demo Programs including the HowDoI application.

132/511



import PySimpleGUI as sg

def ChatBot():
    layout = [[(sg.Text('This is where standard out is being routed', size=[40, 1]))],
              [sg.Output(size=(80, 20))],
              [sg.Multiline(size=(70, 5), enter_submits=True),
               sg.Button('SEND', button_color=(sg.YELLOWS[0], sg.BLUES[0])),
               sg.Button('EXIT', button_color=(sg.YELLOWS[0], sg.GREENS[0]))]]

    window = sg.Window('Chat Window', layout, default_element_size=(30, 2))

    
    while True:
        event, value = window.read()
        if event == 'SEND':
            print(value)
        else:
            break
    window.close()
ChatBot()

Column Element & Frame, Tab "Container" Elements
Columns and Frames and Tabs are all "Container Elements" and behave similarly. This section
focuses on Columns but can be applied elsewhere.

Starting in version 2.9 you'll be able to do more complex layouts by using the Column Element.
Think of a Column as a window within a window. And, yes, you can have a Column within a
Column if you want.

Columns are specified, like all "container elements", in exactly the same way as a window, as a
list of lists.

Columns are needed when you want to specify more than 1 element in a single row.

For example, this layout has a single slider element that spans several rows followed by 7
Text  and Input  elements on the same row.

133/511



Without a Column Element you can't create a layout like this. But with it, you should be able to
closely match any layout created using tkinter only.

import PySimpleGUI as sg

window = sg.Window('Columns')                                   

col = [[sg.Text('col Row 1')],
       [sg.Text('col Row 2'), sg.Input('col input 1')],
       [sg.Text('col Row 3'), sg.Input('col input 2')],
       [sg.Text('col Row 4'), sg.Input('col input 3')],
       [sg.Text('col Row 5'), sg.Input('col input 4')],
       [sg.Text('col Row 6'), sg.Input('col input 5')],
       [sg.Text('col Row 7'), sg.Input('col input 6')]]

layout = [[sg.Slider(range=(1,100), default_value=10, orientation='v', size=(8,20)), sg.Column(col)],
          [sg.In('Last input')],
          [sg.OK()]]

window = sg.Window('Compact 1-line window with column', layout)
event, values = window.read()
window.Close()

sg.Popup(event, values, line_width=200)

134/511



Column, Frame, Tab, Window element_justification

Beginning in Release 4.3 you can set the justification for any container element. This is done
through the element_justification  parameter. This will greatly help anyone that wants to
center all of their content in a window. Previously it was difficult to do these kinds of layouts, if
not impossible.

justify the Column  element's row by setting the Column 's justification  parameter.

You can also justify the entire contents within a Column  by using the Column's
element_justification  parameter.

With these parameter's it is possible to create windows that have their contents centered.
Previously this was very difficult to do.

This is currently only available in the primary PySimpleGUI port.

They can also be used to justify a group of elements in a particular way.

Placing Column  elements inside Columns  elements make it possible to create a multitude of

Sizer Element
New in 4.3 is the Sizer  Element. This element is used to help create a container of a particular
size. It can be placed inside of these PySimpleGUI items:

Column
Frame
Tab
Window

The implementation of a Sizer  is quite simple. It returns an empty Column  element that has
a pad value set to the values passed into the Sizer . Thus isn't not a class but rather a
"Shortcut function" similar to the pre-defined Buttons.

This feature is only available in the tkinter port of PySimpleGUI at the moment. A cross port is
needed.

Frame Element (Labelled Frames, Frames with a title)
Frames work exactly the same way as Columns. You create layout that is then used to initialize
the Frame. Like a Column element, it's a "Container Element" that holds one or more elements
inside.

135/511



Notice how the Frame layout looks identical to a
window layout. A window works exactly the same
way as a Column and a Frame. They all are
"container elements" - elements that contain other
elements.

These container Elements can be nested as deep as you
want. That's a pretty spiffy feature, right? Took a lot
of work so be appreciative. Recursive code isn't
trivial.

This code creates a window with a Frame and 2 buttons.

frame_layout = [
                  [sg.T('Text inside of a frame')],
                  [sg.CB('Check 1'), sg.CB('Check 2')],
               ]
layout = [
          [sg.Frame('My Frame Title', frame_layout, font='Any 12', title_color='blue')],
          [sg.Submit(), sg.Cancel()]
         ]

window = sg.Window('Frame with buttons', layout, font=("Helvetica", 12))

Canvas Element
In my opinion, the tkinter Canvas Widget is the most powerful of the tkinter widget. While I try
my best to completely isolate the user from anything that is tkinter related, the Canvas
Element is the one exception. It enables integration with a number of other packages, often
with spectacular results.

However, there's another way to get that power and that's through the Graph Element, an
even MORE powerful Element as it uses a Canvas that you can directly access if needed. The
Graph Element has a large number of drawing methods that the Canvas Element does not
have. Plus, if you need to, you can access the Graph Element's "Canvas" through a member
variable.

Matplotlib, Pyplot Integration

NOTE - The newest version of Matplotlib (3.1.0) no longer works with this technique. You
must install 3.0.3 in order to use the Demo Matplotlib programs provided in the Demo
Programs section.

One such integration is with Matploplib and Pyplot. There is a Demo program written that you
can use as a design pattern to get an understanding of how to use the Canvas Widget once
you get it.

136/511



def Canvas(canvas - a tkinter canvasf if you created one. Normally not set
         background_color - canvas color
         size - size in pixels
         pad - element padding for packing
         key - key used to lookup element
         tooltip - tooltip text)

The order of operations to obtain a tkinter Canvas Widget is:

    figure_x, figure_y, figure_w, figure_h = fig.bbox.bounds
    
    layout = [[sg.Text('Plot test')],
              [sg.Canvas(size=(figure_w, figure_h), key='canvas')],
              [sg.OK(pad=((figure_w / 2, 0), 3), size=(4, 2))]]

    
    window = sg.Window('Demo Application - Embedding Matplotlib In PySimpleGUI', layout).Finalize()

    
    fig_photo = draw_figure(window.FindElement('canvas').TKCanvas, fig)

    
    event, values = window.read()

To get a tkinter Canvas Widget from PySimpleGUI, follow these steps: * Add Canvas Element to
your window * Layout your window * Call window.Finalize()  - this is a critical step you must
not forget * Find the Canvas Element by looking up using key * Your Canvas Widget Object will
be the found_element.TKCanvas * Draw on your canvas to your heart's content * Call
window.read()  - Nothing will appear on your canvas until you call Read

See Demo_Matplotlib.py  for a Recipe you can copy.

Methods & Properties

TKCanvas - not a method but a property. Returns the tkinter Canvas Widget

Graph Element
All you math fans will enjoy this Element... and all you non-math fans will enjoy it even more.

I've found nothing to be less fun than dealing with a graphic's coordinate system from a GUI
Framework. It's always upside down from what I want. (0,0) is in the upper left hand corner....
sometimes... or was it in the lower left? In short, it's a pain in the ass.

How about the ability to get your own location of (0,0) and then using those coordinates
instead of what tkinter provides? This results in a very powerful capability - working in your
own units, and then displaying them in an area defined in pixels.

137/511



If you've ever been frustrated with where (0,0) is located on some surface you draw on, then
fear not, your frustration ends right here. You get to draw using whatever coordinate system
you want. Place (0,0) anywhere you want, including not anywhere on your Graph. You could
define a Graph that's all negative numbers between -2.1 and -3.5 in the X axis and -3 to -8.2 in
the Y axis

There are 3 values you'll need to supply the Graph Element. They are:

Size of the canvas in pixels
The lower left (x,y) coordinate of your coordinate system
The upper right (x,y) coordinate of your coordinate system

After you supply those values you can scribble all of over your graph by creating Graph
Figures. Graph Figures are created, and a Figure ID is obtained by calling:

DrawCircle
DrawLine
DrawPoint
DrawRectangle
DrawOval
DrawImage

You can move your figures around on the canvas by supplying the Figure ID the x,y delta to
move. It does not move to an absolute position, but rather an offset from where the figure is
now. (Use Relocate to move to a specific location)

graph.MoveFigure(my_circle, 10, 10)

You'll also use this ID to delete individual figures you've drawn:

graph.DeleteFigure(my_circle)

Mouse Events Inside Graph Elements

If you have eneabled events for your Graph Element, then you can receive mouse click events.
If you additionally enable drag_submits  in your creation of the Graph Element, then you will
also get events when you "DRAG" inside of a window. A "Drag" is defined as a left button down
and then the mouse is moved.

When a drag event happens, the event will be the Graph Element's key. The value  returned
in the values dictionary is a tuple of the (x,y) location of the mouse currently.

This means you'll get a "stream" of events. If the mouse moves, you'll get at LEAST 1 and likely
a lot more than 1 event.

138/511



Mouse Up Event for Drags

When you've got drag_submits  enabled, there's a sticky situation that arises.... what happens
when you're done dragging and you've let go of the mouse button? How is the "Mouse Up"
event relayed back to your code.

The "Mouse Up" will generate an event to you with the value: Graph_key  + '+UP' . Thus, if
your Graph Element has a key of '_GRAPH_' , then the event you will receive when the mouse
button is released is: '_GRAPH_+UP'

Yea, it's a little weird, but it works. It's SIMPLE too. I recommend using the .startswith  and
.endswith  built-ins when dealing with these kinds of string values.

Here is an example of the events  and the values dictionary  that was generated by clicking
and dragging inside of a Graph Element with the key == 'graph':

graph {'graph': (159, 256)}
graph {'graph': (157, 256)}
graph {'graph': (157, 256)}
graph {'graph': (157, 254)}
graph {'graph': (157, 254)}
graph {'graph': (154, 254)}
graph {'graph': (154, 254)}
graph+UP {'graph': (154, 254)}

Table Element
Table and Tree Elements are of the most complex in PySimpleGUI. They have a lot of options
and a lot of unusual characteristics.

window.read()  return values from Table Element

The values returned from a Window.Read  call for the Table Element are a list of row numbers
that are currently highlighted.

The Qt Table.Get()  call

New in PySimpleGUIQt is the addition of the Table  method Get . This method returns the
table that is currently being shown in the GUI. This method was required in order to obtain
any edits the user may have made to the table.

For the tkinter port, it will return the same values that was passed in when the table was
created because tkinter Tables cannot be modified by the user (please file an Issue if you
know a way).

Known Table  visualization problem....
139/511



There has been an elusive problem where clicking on or near the table's header caused tkinter
to go crazy and resize the columns continuously as you moved the mouse.

This problem has existed since the first release of the Table  element. It was fixed in release
4.3.

Known table colors in Python 3.7.3, 3.7.4, 3.8, ?

The tkinter that's been released in the past several releases of Python has a bug. Table colors
of all types are not working, at all. The background of the rows never change. If that's
important to you, you'll need to downgrade your Python version. 3.6 works really well with
PySimpleGUI and tkinter.

Empty Tables

If you wish to start your table as being an empty one, you will need to specify an empty table.
This list comprehension will create an empty table with 15 rows and 6 columns.

data = [['' for row in range(15)]for col in range(6)]

Events from Tables

There are two ways to get events generated from Table Element.
change_submits  event generated as soon as a row is clicked on bind_return_key  event

generate when a row is double clicked or the return key is press while on a row.

Tree Element
The Tree Element and Table Element are close cousins. Many of the parameters found in the
Table Element apply to Tree Elements. In particular the heading information, column widths,
etc.

Unlike Tables there is no standard format for trees. Thus the data structure passed to the Tree
Element must be constructed. This is done using the TreeData class. The process is as follows:

Get a TreeData Object
"Insert" data into the tree
Pass the filled in TreeData object to Tree Element

TreeData format

def TreeData()
def Insert(self, parent, key, text, values, icon=None)

To "insert" data into the tree the TreeData method Insert is called.
140/511



Insert(parent_key, key, display_text, values)

To indicate insertion at the head of the tree, use a parent key of "". So, every top-level node in
the tree will have a parent node = ""

This code creates a TreeData object and populates with 3 values

treedata = sg.TreeData()

treedata.Insert("", '_A_', 'A', [1,2,3])
treedata.Insert("", '_B_', 'B', [4,5,6])
treedata.Insert("_A_", '_A1_', 'A1', ['can','be','anything'])

Note that you can use the same values for display_text and keys. The only thing you have to
watch for is that you cannot repeat keys.

When Reading a window the Table Element will return a list of rows that are selected by the
user. The list will be empty is no rows are selected.

Icons on Tree Entries

If you wish to show an icon next to a tree item, then you specify the icon in the call to Insert .
You pass in a filename or a Base64 bytes string using the optional icon  parameter.

Here is the result of showing an icon with a tree entry.

141/511



Tab and Tab Group Elements
Tabs are another of PySimpleGUI "Container Elements". It is capable of "containing" a layout
just as a window contains a layout. Other container elements include the Column  and Frame
elements.

Just like windows and the other container elements, the Tab  Element has a layout consisting
of any desired combination of Elements in any desired layouts. You can have Tabs inside of
Tabs inside of Columns inside of Windows, etc.

Tab  layouts look exactly like Window layouts, that is they are a list of lists of Elements.

How you place a Tab element into a window is different than all other elements.  You cannot place a
Tab directly into a Window's layout.

Also, tabs cannot be made invisible at this time. They have a visibily parameter but calling
update will not change it.

142/511



Tabs are contained in TabGroups. They are not placed into other layouts. To get a Tab into
your window, first place the Tab  Element into a TabGroup  Element and then place the
TabGroup  Element into the Window layout.

Let's look at this Window as an example:

View of second tab:

tab1_layout =  [[sg.T('This is inside tab 1')]]

tab2_layout = [[sg.T('This is inside tab 2')],
               [sg.In(key='in')]]

The layout for the entire window looks like this:

layout = [[sg.TabGroup([[sg.Tab('Tab 1', tab1_layout), sg.Tab('Tab 2', 
tab2_layout)]])],
              [sg.Button('Read')]]

The Window layout has the TabGroup and within the tab
Group are the two Tab elements.

One important thing to notice about all of these container
Elements and Windows layouts... they all take a "list of lists" as
the layout. They all have a layout that looks like this [[ ]]

You will want to keep this [[ ]]  construct in your head a you're debugging your tabbed
windows. It's easy to overlook one or two necessary ['s

As mentioned earlier, the old-style Tabs were limited to being at the Window-level only. In
other words, the tabs were equal in size to the entire window. This is not the case with the
"new-style" tabs. This is why you're not going to be upset when you discover your old code no
longer works with the new PySimpleGUI release. It'll be worth the few moments it'll take to
convert your code.

Check out what's possible with the NEW Tabs!

143/511



Check out Tabs 7 and 8. We've got a Window with a Column containing Tabs 5 and 6. On Tab 6
are... Tabs 7 and 8.

As of Release 3.8.0, not all of options shown in the API definitions of the Tab and TabGroup
Elements are working. They are there as placeholders.

First we have the Tab layout definitions. They mirror what you see in the screen shots. Tab 1
has 1 Text Element in it. Tab 2 has a Text and an Input Element.

Reading Tab Groups

Tab Groups now return a value when a Read returns. They return which tab is currently
selected. There is also a enable_events  parameter that can be set that causes a Read to return
if a Tab in that group is selected / changed. The key or title belonging to the Tab that was
switched to will be returned as the value

x## Pane Element

New in version 3.20 is the Pane Element, a super-cool tkinter feature. You won't find this one
in PySimpleGUIQt, only PySimpleGUI. It's difficult to describe one of these things. Think of
them as "Tabs without labels" that you can slide.

144/511



Each "Pane" of a Pane Element must be a Column Element.
The parameter pane_list  is a list of Column Elements.

Calls can get a little hairy looking if you try to declare
everything in-line as you can see in this example.

sg.Pane([col5, sg.Column([[sg.Pane([col1, col2, col4], handle_size=15, 
orientation='v',  background_color=None, show_handle=True, 
visible=True, key='_PANE_', border_width=0,  
relief=sg.RELIEF_GROOVE),]]),col3 ], orientation='h', 
background_color=None, size=(160,160), relief=sg.RELIEF_RAISED, 
border_width=0)

Combing these with visibility make for an interesting
interface with entire panes being hidden from view until neded by the user. It's one way of
producing "dynamic" windows.

Colors
Starting in version 2.5 you can change the background colors for the window and the
Elements.

Your windows can go from this:

145/511



to this... with one function call...

While you can do it on an element by element or window level basis, the easiest way, by far, is
a call to SetOptions .

Be aware that once you change these options they are changed for the rest of your program's
execution. All of your windows will have that look and feel, until you change it to something
else (which could be the system default colors.

This call sets all of the different color options.

SetOptions(background_color='#9FB8AD',
       text_element_background_color='#9FB8AD',
       element_background_color='#9FB8AD',
       scrollbar_color=None,
       input_elements_background_color='#F7F3EC',
       progress_meter_color = ('green', 'blue')
       button_color=('white','#475841'))

SystemTray

146/511



This is a PySimpleGUIQt and PySimpleGUIWx only feature. Don't know of a way to do it using
tkinter. Your source code for SystemTray is identical for the Qt and Wx implementations. You
can switch frameworks by simply changing your import statement.

In addition to running normal windows, it's now also possible to have an icon down in the
system tray that you can read to get menu events. There is a new SystemTray object that is
used much like a Window object. You first get one, then you perform Reads in order to get
events.

Here is the definition of the SystemTray object.

SystemTray(menu=None, filename=None, data=None, data_base64=None, tooltip=None):
        '''
 SystemTray - create an icon in the system tray
 :param menu: Menu definition
 :param filename: filename for icon
 :param data: in-ram image for icon
 :param data_base64: basee-64 data for icon
 :param tooltip: tooltip string '''

You'll notice that there are 3 different ways to specify the icon image. The base-64 parameter
allows you to define a variable in your .py code that is the encoded image so that you do not
need any additional files. Very handy feature.

System Tray Design Pattern
Here is a design pattern you can use to get a jump-start.

This program will create a system tray icon and perform a blocking Read. If the item "Open" is
chosen from the system tray, then a popup is shown.

import PySimpleGUIQt as sg

menu_def = ['BLANK', ['&Open', '---', '&Save', ['1', '2', ['a', 'b']], '&Properties', 'E&xit']]

tray = sg.SystemTray(menu=menu_def, filename=r'default_icon.ico')

while True:  
  menu_item = tray.Read()
    print(menu_item)
    if menu_item == 'Exit':
        break
    elif menu_item == 'Open':
        sg.Popup('Menu item chosen', menu_item)

The design pattern creates an icon that will display this menu:

147/511



Icons

When specifying "icons", you can use 3 different formats. * filename - filename *
data_base64  - base64 byte string * ' data  - in-ram bitmap or other "raw" image

You will find 3 parameters used to specify these 3 options on both the initialize statement and
on the Update method.

menu_def = ['BLANK', ['&Open', '&Save', ['1', '2', ['a', 'b']], '!&Properties', 'E&xit']]

A menu is defined using a list. A "Menu entry" is a string that specifies: * text shown *
keyboard shortcut * key

See section on Menu Keys for more information on using keys with menus.

An entry without a key and keyboard shortcut is a simple string 'Menu Item'

If you want to make the "M" be a keyboard shortcut, place an &  in front of the letter that is
the shortcut. '&Menu Item'

You can add "keys" to make menu items unique or as another way of identifying a menu item
than the text shown. The key is added to the text portion by placing ::  after the text.

'Menu Item::key'

The first entry can be ignored. 'BLANK ' was chosen for this example. It's this way because
normally you would specify these menus under some heading on a menu-bar. But here there
is no heading so it's filled in with any value you want.

Separators If you want a separator between 2 items, add the entry '---'  and it will add a
separator item at that place in your menu.

Disabled menu entries

If you want to disable a menu entry, place a !  before the menu entry

SystemTray Methods

148/511



def Read(timeout=None)
    '''
 Reads the context menu
 :param timeout: Optional.  Any value other than None indicates a non-blocking read
 :return:   String representing meny item chosen. None if nothing read.
    '''

The timeout  parameter specifies how long to wait for an event to take place. If nothing
happens within the timeout period, then a "timeout event" is returned. These types of reads
make it possible to run asynchronously. To run non-blocked, specify timeout=0 on the Read
call.

Read returns the menu text, complete with key, for the menu item chosen. If you specified
Open::key  as the menu entry, and the user clicked on Open , then you will receive the string
Open::key  upon completion of the Read.

Read special return values

In addition to Menu Items, the Read call can return several special values. They include:

EVENT_SYSTEM_TRAY_ICON_DOUBLE_CLICKED - Tray icon was double clicked
EVENT_SYSTEM_TRAY_ICON_ACTIVATED - Tray icon was single clicked
EVENT_SYSTEM_TRAY_MESSAGE_CLICKED - a message balloon was clicked TIMEOUT_KEY is
returned if no events are available if the timeout value is set in the Read call

Hide

Hides the icon. Note that no message balloons are shown while an icon is hidden.

def Hide()

Close

Does the same thing as hide

def Close()

UnHide

Shows a previously hidden icon

def UnHide()

ShowMessage

Shows a balloon above the icon in the system tray area. You can specify your own icon to be
shown in the balloon, or you can set messageicon  to one of the preset values.

149/511



This message has a custom icon.

The preset messageicon  values are:

SYSTEM_TRAY_MESSAGE_ICON_INFORMATION
SYSTEM_TRAY_MESSAGE_ICON_WARNING
SYSTEM_TRAY_MESSAGE_ICON_CRITICAL
SYSTEM_TRAY_MESSAGE_ICON_NOICON

ShowMessage(title, message, filename=None, data=None, 
data_base64=None, messageicon=None, time=10000):
'''
 Shows a balloon above icon in system tray
 :param title:  Title shown in balloon
 :param message: Message to be displayed
 :param filename: Optional icon filename
 :param data: Optional in-ram icon
 :param data_base64: Optional base64 icon
 :param time: How long to display message in milliseconds  :return:
 '''

Note, on windows it may be necessary to make a registry change to enable message balloons
to be seen. To fix this, you must create the DWORD you see in this screenshot.

150/511



Update

You can update any of these items within a SystemTray object * Menu definition * Icon *
Tooltip

Change them all or just 1.

Global Settings
There are multiple ways to customize PySimpleGUI. The call with the most granularity (allows
access to specific and precise settings). The ChangeLookAndFeel  call is in reality a single call to
SetOptions  where it changes 13 different settings.

151/511



Mac Users - You can't call ChangeLookAndFeel  but you can call SetOptions  with any sets of
values you want. Nothing is being blocked or filtered.

These settings apply to all windows that are created in the future.

SetOptions . The options and Element options will take precedence over these settings.
Settings can be thought of as levels of settings with the window-level being the highest and the
Element-level the lowest. Thus the levels are:

Global
Window
Element

Each lower level overrides the settings of the higher level. Once settings have been changed,
they remain changed for the duration of the program (unless changed again).

Persistent windows (Window stays open after button click)
Apologies that the next few pages are perhaps confusing. There have been a number of
changes recently in PySimpleGUI's Read calls that added some really cool stuff, but at the
expense of being not so simple. Part of the issue is an attempt to make sure existing code
doesn't break. These changes are all in the area of non-blocking reads and reads with
timeouts.

There are 2 ways to keep a window open after the user has clicked a button. One way is to use
non-blocking windows (see the next section). The other way is to use buttons that 'read' the
window instead of 'close' the window when clicked. The typical buttons you find in windows,
including the shortcut buttons, close the window. These include OK, Cancel, Submit, etc. The
Button Element also closes the window.

The RButton  Element creates a button that when clicked will return control to the user, but
will leave the window open and visible. This button is also used in Non-Blocking windows. The
difference is in which call is made to read the window. The normal Read  call with no
parameters will block, a call with a timeout  value of zero will not block.

Note that InputText  and MultiLine  Elements will be cleared when performing a Read . If you
do not want your input field to be cleared after a Read  then you can set the do_not_clear
parameter to True when creating those elements. The clear is turned on and off on an element
by element basis.

The reasoning behind this is that Persistent Windows are often "forms". When "submitting" a
form you want to have all of the fields left blank so the next entry of data will start with a fresh
window. Also, when implementing a "Chat Window" type of interface, after each read / send of

152/511



the chat data, you want the input field cleared. Think of it as a Texting application. Would you
want to have to clear your previous text if you want to send a second text?

The design pattern for Persistent Windows was already shown to you earlier in the
document... here it is for your convenience.

import PySimpleGUI as sg

layout = [[sg.Text('Persistent window')],
          [sg.Input()],
          [sg.Button('Read'), sg.Exit()]]

window = sg.Window('Window that stays open', layout)

while True:
    event, values = window.read()
    if event is None or event == 'Exit':
        break
    print(event, values)

window.Close()

Read(timeout = t, timeout_key=TIMEOUT_KEY)
Read with a timeout is a very good thing for your GUIs to use in a read non-blocking situation,
you can use them. If your device can wait for a little while, then use this kind of read. The
longer you're able to add to the timeout value, the less CPU time you'll be taking.

One way of thinking of reads with timeouts:

During the timeout time, you are "yielding" the processor to do other tasks.

But it gets better than just being a good citizen....your GUI will be more responsive than if
you used a non-blocking read

Let's say you had a device that you want to "poll" every 100ms. The "easy way out" and the
only way out until recently was this:

while True:             
    event, values = window.ReadNonBlocking()   
    read_my_hardware() 
    time.sleep(.1)     

This program will quickly test for user input, then deal with the hardware. Then it'll sleep for
100ms, while your gui is non-responsive, then it'll check in with your GUI again. I fully realize
this is a crude way of doing things. We're talking dirt simple stuff without trying to use threads,
etc to 'get it right'. It's for demonstration purposes.

153/511



The new and better way.... using the Read Timeout mechanism, the sleep goes away.

while True:             
    event, values = window.Read(timeout = 100)
    read_my_hardware() 

This event loop will run every 100 ms. You're making a Read call, so anything that the use does
will return back to you immediately, and you're waiting up to 100ms for the user to do
something. If the user doesn't do anything, then the read will timeout and execution will
return to the program.

Non-Blocking Windows (Asynchronous reads, timeouts)
You can easily spot a non-blocking call in PySimpleGUI. If you see a call to Window.Read()  with
a timeout parameter set to a value other than None , then it is a non-blocking call.

This call to read is asynchronous as it has a timeout value:

The new way
```python
event, values = sg.Read(timeout=20)

You should use the new way if you're reading this for the first time.

The difference in the 2 calls is in the value of event. For ReadNonBlocking, event will be None
if there are no other events to report. There is a "problem" with this however. With normal
Read calls, an event value of None signified the window was closed. For ReadNonBlocking, the
way a closed window is returned is via the values variable being set to None.

sg.TIMEOUT_KEY
If you're using the new, timeout=0 method, then an event value of None signifies that the
window was closed, just like a normal Read. That leaves the question of what it is set to when
not other events are happening. This value will be the value of timeout_key . If you did not
specify a timeout_key value in your call to read, then it will be set to a default value of:
TIMEOUT_KEY = __timeout__

If you wanted to test for "no event" in your loop, it would be written like this:

while True:
 event, value = window.Read(timeout=0)
 if event is None:
 break
 if event == sg.TIMEOUT_KEY:
 print("Nothing happened")

154/511

Use async windows sparingly. It's possible to have a window that appears to be async, but it is
not. Please try to find other methods before going to async windows. The reason for this plea
is that async windows poll tkinter over and over. If you do not have a timeout in your Read and
yuou've got nothing else your program will block on, then you will eat up 100% of the CPU
time. It's important to be a good citizen. Don't chew up CPU cycles needlessly. Sometimes your
mouse wants to move ya know?

Non-blocking (timeout=0) is generally reserved as a "last resort". Too many times people use
non-blocking reads when a blocking read will do just fine.

Small Timeout Values (under 10ms)

Do Not use a timeout of less than 10ms. Otherwise you will simply thrash, spending your time
trying to do some GUI stuff, only to be interruped by a timeout timer before it can get anything
done. The results are potentially disasterous.

There is a hybrid approach... a read with a timeout. You'll score much higher points on the
impressive meter if you're able to use a lot less CPU time by using this type of read.

The most legit time to use a non-blocking window is when you're working directly with
hardware. Maybe you're driving a serial bus. If you look at the Event Loop in the
Demo_OpenCV_Webcam.py program, you'll see that the read is a non-blocking read. However,
there is a place in the event loop where blocking occurs. The point in the loop where you will
block is the call to read frames from the webcam. When a frame is available you want to
quickly deliver it to the output device, so you don't want your GUI blocking. You want the read
from the hardware to block.

Another example can be found in the demo for controlling a robot on a Raspberry Pi. In that
application you want to read the direction buttons, forward, backward, etc, and immediately
take action. If you are using RealtimeButtons, your only option at the moment is to use non-
blocking windows. You have to set the timeout to zero if you want the buttons to be real-time
responsive.

However, with these buttons, adding a sleep to your event loop will at least give other
processes time to execute. It will, however, starve your GUI. The entire time you're sleeping,
your GUI isn't executing.

Periodically Calling Read
Let's say you do end up using non-blocking reads... then you've got some housekeeping to do.
It's up to you to periodically "refresh" the visible GUI. The longer you wait between updates to
your GUI the more sluggish your windows will feel. It is up to you to make these calls or your
GUI will freeze.

155/511

There are 2 methods of interacting with non-blocking windows. 1. Read the window just as you
would a normal window 2. "Refresh" the window's values without reading the window. It's a
quick operation meant to show the user the latest values

With asynchronous windows the window is shown, user input is read, but your code keeps
right on chugging. YOUR responsibility is to call PySimpleGUI.Read on a periodic basis. Several
times a second or more will produce a reasonably snappy GUI.

Exiting (Closing) a Persistent Window

If your window has a button that closes the window, then PySimpleGUI will automatically close
the window for you. If all of your buttons are ReadButtons, then it'll be up to you to close the
window when done. To close a window, call the Close method.

window.Close()

Persistent Window Example - Running timer that updates
See the sample code on the GitHub named Demo Media Player for another example of Async
windows. We're going to make a window and update one of the elements of that window every
.01 seconds. Here's the entire code to do that.

156/511

import PySimpleGUI as sg
import time

sg.ChangeLookAndFeel('Black')
sg.SetOptions(element_padding=(0, 0))

layout = [[sg.Text('')],
 [sg.Text('', size=(8, 2), font=('Helvetica', 20), justification='center', key='text')],
 [sg.ReadButton('Pause', key='button', button_color=('white', '#001480')),
 sg.ReadButton('Reset', button_color=('white', '#007339'), key='Reset'),
 sg.Exit(button_color=('white', 'firebrick4'), key='Exit')]]

window = sg.Window('Running Timer', layout, no_titlebar=True, auto_size_buttons=False,
keep_on_top=True, grab_anywhere=True)

current_time = 0
paused = False
start_time = int(round(time.time() * 100))
while (True):

 event, values = window.Read(timeout=10)
 current_time = int(round(time.time() * 100)) - start_time

 window.FindElement('text').Update('{:02d}:{:02d}.{:02d}'.format((current_time // 100) // 60,
 (current_time // 100) % 60,
 current_time % 100))

Previously this program was implemented using a sleep in the loop to control the clock tick.
This version uses the new timeout parameter. The result is a window that reacts quicker then
the one with the sleep and the accuracy is just as good.

Instead of a Non-blocking Read --- Use enable_events = True or
return_keyboard_events = True

Any time you are thinking "I want an X Element to cause a Y Element to do something", then
you want to use the enable_events option.

Instead of polling, try options that cause the window to return to you. By using non-blocking
windows, you are polling. You can indeed create your application by polling. It will work. But
you're going to be maxing out your processor and may even take longer to react to an event
than if you used another technique.

Examples

One example is you have an input field that changes as you press buttons on an on-screen
keypad.

157/511

Updating Elements (changing element's values in an active
window)
If you want to change an Element's settings in your window after the window has been
created, then you will call the Element's Update method.

NOTE a window must be Read or Finalized before any Update calls can be made. Also, not all
settings available to you when you created the Element are available to you via its Update
method.

Here is an example of updating a Text Element

import PySimpleGUI as sg

layout = [[sg.Text('My layout', key='_TEXT_')],
 [sg.Button('Read')]]

window = sg.Window('My new window', layout)

while True:
 event, values = window.read()
 if event is None:
 break
 window.Element('_TEXT_').Update('My new text value')

Notice the placement of the Update call. If you wanted to Update the Text Element prior to the
Read call, outside of the event loop, then you must call Finalize on the window first.

In this example, the Update is done prior the Read. Because of this, the Finalize call is added to
the Window creation.

158/511

import PySimpleGUI as sg

layout = [[sg.Text('My layout', key='_TEXT_')],
 [sg.Button('Read')]
]

window = sg.Window('My new window', layout).Finalize()

window.Element('_TEXT_').Update('My new text value')

while True:
 event, values = window.read()
 if event is None:
 break

Persistent windows remain open and thus continue to interact with the user after the Read
has returned. Often the program wishes to communicate results (output information) or
change an Element's values (such as populating a List Element).

You can use Update to do things like: * Have one Element (appear to) make a change to
another Element * Disable a button, slider, input field, etc * Change a button's text * Change
an Element's text or background color * Add text to a scrolling output window * Change the
choices in a list * etc

The way this is done is via an Update method that is available for nearly all of the Elements.
Here is an example of a program that uses a persistent window that is updated.

In some programs these updates happen
in response to another Element. This
program takes a Spinner and a Slider's
input values and uses them to resize a
Text Element. The Spinner and Slider are
on the left, the Text element being
changed is on the right.

159/511

import PySimpleGUI as sg
fontSize = 12
layout = [[sg.Spin([sz for sz in range(6, 172)], font=('Helvetica 20'), initial_value=fontSize,
change_submits=True, key='spin'),
 sg.Slider(range=(6,172), orientation='h', size=(10,20),
 change_submits=True, key='slider', font=('Helvetica 20')),
 sg.Text("Aa", size=(2, 1), font="Helvetica " + str(fontSize), key='text')]]

sz = fontSize
window = sg.Window("Font size selector", layout, grab_anywhere=False)

while True:
 event, values= window.read()
 if event is None:
 break
 sz_spin = int(values['spin'])
 sz_slider = int(values['slider'])
 sz = sz_spin if sz_spin != fontSize else sz_slider
 if sz != fontSize:
 fontSize = sz
 font = "Helvetica " + str(fontSize)
 window.FindElement('text').Update(font=font)
 window.FindElement('slider').Update(sz)
 window.FindElement('spin').Update(sz)

print("Done.")

Inside the event loop we read the value of the Spinner and the Slider using those Elements'
keys. For example, values['slider'] is the value of the Slider Element.

This program changes all 3 elements if either the Slider or the Spinner changes. This is done
with these statements:

window.FindElement('text').Update(font=font)
window.FindElement('slider').Update(sz)
window.FindElement('spin').Update(sz)

Remember this design pattern because you will use it OFTEN if you use persistent windows.

It works as follows. The call to window.FindElement returns the Element object represented by
they provided key . This element is then updated by calling it's Update method. This is
another example of Python's "chaining" feature. We could write this code using the long-form:

text_element = window.FindElement('text')
text_element.Update(font=font)

160/511

The takeaway from this exercise is that keys are key in PySimpleGUI's design. They are used to
both read the values of the window and also to identify elements. As already mentioned, they
are used as targets in Button calls.

Locating Elements (FindElement == Element == Elem)

The Window method call that's used to find an element is: FindElement or the shortened
version Element or even shorter (version 4.1+) Elem

When you see a call to window.FindElement or window.Element, then you know an element is
being addressed. Normally this is done so you can call the element's Update method.

ProgressBar / Progress Meters

Note that to change a progress meter's progress, you call UpdateBar , not Update .

Keyboard & Mouse Capture
NOTE - keyboard capture is currently formatted uniquely among the ports. For basic letters
and numbers there is no great differences, but when you start adding Shift and Control or
special keyus, they all behave slightly differently. Your best bet is to simply print what is being
returned to you to determine what the format for the particular port is.

Beginning in version 2.10 you can capture keyboard key presses and mouse scroll-wheel
events. Keyboard keys can be used, for example, to detect the page-up and page-down keys
for a PDF viewer. To use this feature, there's a boolean setting in the Window call
return_keyboard_events that is set to True in order to get keys returned along with buttons.

Keys and scroll-wheel events are returned in exactly the same way as buttons.

For scroll-wheel events, if the mouse is scrolled up, then the button text will be
MouseWheel:Up . For downward scrolling, the text returned is MouseWheel:Down

Keyboard keys return 2 types of key events. For "normal" keys (a,b,c, etc), a single character is
returned that represents that key. Modifier and special keys are returned as a string with 2
parts:

Key Sym:Key Code

Key Sym is a string such as 'Control_L'. The Key Code is a numeric representation of that key.
The left control key, when pressed will return the value 'Control_L:17'

161/511

import PySimpleGUI as sg

text_elem = sg.Text("", size=(18, 1))

layout = [[sg.Text("Press a key or scroll mouse")],
 [text_elem],
 [sg.Button("OK")]]

window = sg.Window("Keyboard Test", layout, return_keyboard_events=True, use_default_focus=False)

while True:
 event, value = window.read()

 if event == "OK" or event is None:
 print(event, "exiting")
 break
 text_elem.Update(event)

You want to turn off the default focus so that there no buttons that will be selected should you
press the spacebar.

Beginning in version 3.01 you can add a MenuBar to your window. You specify the menus in
much the same way as you do window layouts, with lists. Menu selections are returned as
events and as of 3.17, also as in the values dictionary. The value returned will be the entire
menu entry, including the key if you specified one.

 menu_def = [['File', ['Open', 'Save', 'Exit',]],
 ['Edit', ['Paste', ['Special', 'Normal',], 'Undo'],],
 ['Help', 'About...'],]

162/511

Note the placement of ',' and of []. It's tricky to get the nested menus correct that implement
cascading menus. See how paste has Special and Normal as a list after it. This means that
Paste has a cascading menu with items Special and Normal.

Methods

To add a menu to a Window place the Menu or MenuBar element into your layout.

layout = [[sg.Menu(menu_def)]]

It doesn't really matter where you place the Menu Element in your layout as it will always be
located at the top of the window.

When the user selects an item, it's returns as the event (along with the menu item's key if one
was specified in the menu definition)

Button menus were introduced in version 3.21, having been previously released in
PySimpleGUIQt. They work exactly the same and are source code compatible between
PySimpleGUI and PySimpleGUIQt. These types of menus take a single menu entry where a
Menu Bar takes a list of menu entries.

Return values for ButtonMenus are different than Menu Bars.

You will get back the ButtonMenu's KEY as the event. To get the actual item selected, you will
look it up in the values dictionary. This can be done with the expression values[event]

163/511

Right Click Menus were introduced in version 3.21. Almost every element has a
right_click_menu parameter and there is a window-level setting for rich click menu that will
attach a right click menu to all elements in the window.

The menu definition is the same as the button menu definition, a single menu entry.

right_click_menu = ['&Right', ['Right', '!&Click', '&Menu', 'E&xit', 'Properties']]

The first string in a right click menu and a button menu is ignored. It is not used. Normally you
would put the string that is shown on the menu bar in that location.

Return values for right click menus are the same as MenuBars. The value chosen is
returned as the event.

You have used ALT-key in other Windows programs to navigate menus. For example Alt-F+X
exits the program. The Alt-F pulls down the File menu. The X selects the entry marked Exit.

The good news is that PySimpleGUI allows you to create the same kind of menus! Your
program can play with the big-boys. And, it's trivial to do.

All that's required is for your to add an "&" in front of the letter you want to appear with an
underscore. When you hold the Alt key down you will see the menu with underlines that you
marked.

One other little bit of polish you can add are separators in your list. To add a line in your list of
menu choices, create a menu entry that looks like this: '---'

This is an example Menu with underlines and a separator.

------ Menu Definition ------
menu_def = [['&File', ['&Open', '&Save', '---', 'Properties', 'E&xit']],
 ['&Edit', ['Paste', ['Special', 'Normal',], 'Undo'],],
 ['&Help', '&About...'],]

And this is the spiffy menu it produced:

164/511

If you want one of your menu items to be disabled, then place a '!' in front of the menu entry.
To disable the Paste menu entry in the previous examples, the entry would be: ['!&Edit',
['Paste', ['Special', 'Normal',], 'Undo'],]

If your want to change the disabled menu item flag / character from '!' to something else,
change the variable MENU_DISABLED_CHARACTER

Beginning in version 3.17 you can add a key to your menu entries. The key value will be
removed prior to be inserted into the menu. When you receive Menu events, the entire menu
entry, including the key is returned. A key is indicated by adding :: after a menu entry,
followed by the key.

To add the key _MY_KEY_ to the Special menu entry, the code would be:

['&Edit', ['Paste', ['Special::_MY_KEY_', 'Normal',], 'Undo'],]

If you want to change the characters that indicate a key follows from '::' to something else,
change the variable MENU_KEY_SEPARATOR

Having read through the Menu section, you may have noticed that the right click menu and
the button menu have a format that is a little odd as there is a part of it that is not utilized (the
first very string). Perhaps the words "Not Used" should be in the examples.... But, there's a
reason to retain words there that make sense.

165/511

The reason for this is an architectural one, but it also has a convienence for the user. You can
put the individual menu items (button and right click) into a list and you'll have a menu bar
definition.

This would work to make a menu bar from a series of these individual menu defintions:

menu_bar = [right_click_menu_1, right_click_menu_2, button_menu_def]

And, of course, the direction works the opposite too. You can take a Menu Bar definition and
pull out an individual menu item to create a right click or button menu.

Running Multiple Windows
This is where PySimpleGUI continues to be simple, but the problem space just went into the
realm of "Complex".

If you wish to run multiple windows in your event loop, then there are 2 methods for doing
this.

1. First window does not remain active while second window is visible
2. First window remains active while second window is visible

You will find the 2 design matters in 2 demo programs in the Demo Program area of the
GitHub (http://www.PySimpleGUI.com)

Critically important When creating a new window you must use a "fresh" layout every time.
You cannot reuse a layout from a previous window. As a result you will see the layout for
window 2 being defined inside of the larger event loop.

If you have a window layout that you used with a window and you've closed the window, you
cannot use the specific elements that were in that window. You must RE-CREATE your layout
variable every time you create a new window. Read that phrase again.... You must RE-CREATE
your layout variable every time you create a new window. That means you should have a
statemenat that begins with layout = . Sorry to be stuck on this point, but so many people
seem to have trouble following this simple instruction.

THE GOLDEN RULE OF WINDOW LAYOUTS
Thou shalt not re-use a windows's layout.... ever!

Or more explicitly put....

If you are calling Window then you should define your window layout in the statement just
prior to the Window call.

166/511

Demo Programs For Multiple Windows
There are several "Demo Programs" that will help you run multiple windows. Please download
these programs and FOLLOW the example they have created for you.

Here is some of the code patterns you'll find when looking through the demo programs.

Multi-Window Design Pattern 1 - both windows active

import PySimpleGUI as sg

layout = [[sg.Text('Window 1'),],
 [sg.Input(do_not_clear=True)],
 [sg.Text('', key='_OUTPUT_')],
 [sg.Button('Launch 2'), sg.Button('Exit')]]

win1 = sg.Window('Window 1', layout)

win2_active = False
while True:
 ev1, vals1 = win1.Read(timeout=100)
 win1.FindElement('_OUTPUT_').Update(vals1[0])
 if ev1 is None or ev1 == 'Exit':
 break

 if not win2_active and ev1 == 'Launch 2':
 win2_active = True
 layout2 = [[sg.Text('Window 2')],
 [sg.Button('Exit')]]

 win2 = sg.Window('Window 2', layout)

 if win2_active:
 ev2, vals2 = win2.Read(timeout=100)
 if ev2 is None or ev2 == 'Exit':
 win2_active = False
 win2.Close()

Multi-Window Design Pattern 2 - only 1 active window

167/511

import PySimpleGUIQt as sg

layout = [[sg.Text('Window 1'),],
 [sg.Input(do_not_clear=True)],
 [sg.Text('', key='_OUTPUT_')],
 [sg.Button('Launch 2')]]

win1 = sg.Window('Window 1', layout)
win2_active=False
while True:
 ev1, vals1 = win1.Read(timeout=100)
 if ev1 is None:
 break
 win1.FindElement('_OUTPUT_').Update(vals1[0])

 if ev1 == 'Launch 2' and not win2_active:
 win2_active = True
 win1.Hide()
 layout2 = [[sg.Text('Window 2')],
 [sg.Button('Exit')]]

 win2 = sg.Window('Window 2', layout)
 while True:
 ev2, vals2 = win2.Read()
 if ev2 is None or ev2 == 'Exit':
 win2.Close()
 win2_active = False
 win1.UnHide()
 break

The PySimpleGUI Debugger
Listen up if you are * advanced programmers debugging some really hairy stuff *
programmers from another era that like to debug this way * those that want to have "x-ray
vision" into their code * asked to use debugger to gather information * running on a platform
that lacks ANY debugger * debugging a problem that happens only outside of a debugger
environment * finding yourself saying "but it works when running PyCharm"

Starting on June 1, 2019, a built-in version of the debugger imwatchingyou has been shipping
in every copy of PySimpleGUI. It's been largely downplayed to gauge whether or not the added
code and the added feature and the use of a couple of keys, would mess up any users. Over
30,000 users have installed PySimpleGUI since then and there's not be a single Issue filed nor
comment/complaint made, so seems safe enough to normal users... so far....

168/511

So far no one has reported anything at all about the debugger. The assumption is that it is
quietly lying dormant, waiting for you to press the BREAK or CONTROL + BREAK keys. It's
odd no one has accidently done this and freaked out, logging an Issue.

The plain PySimpleGUI module has a debugger builtin. For the other ports, please use the
package imwatchingyou .

What is it? Why use it? What the heck? I already have an IDE.
This debugger provides you with something unique to most typical Python developers, the
ability to "see" and interact with your code, while it is running. You can change variable
values while your code continues to run.

Print statements are cool, but perhaps you're tired of seeing a printout of event and values :

Push Me {0: 'Input here'}
Push Me {0: 'Input here'}
Push Me {0: 'Input here'}

And would prefer to see this window updating continuously in the upper right corner of your
display:

Notice how easy it is, using this window alone, to get the location that your PySimpleGUI
package is coming from for sure, no guessing. Expect this window to be in your debugging
future as it'll get asked for from time to time.

Preparing To Run the Debugger
If your program is running with blocking Read calls, then you will want to add a timeout to
your reads. This is because the debugger gets it's cycles by stealing a little bit of time from
these async calls... but only when you have one of these debugger windows open so no
bitching about wasted CPU time as there is none.

Your event loop will be modified from this blocking:

while True:
 event, values = window.read()

To this non-blocking:

169/511

while True:
 event, values = window.Read(timeout=200)
 if event == sg.TIMEOUT_KEY:
 continue

These 3 lines will in no way change how your application looks and performs. You can do this
to any PySimpleGUI app that uses a blocking read and you'll not notice a difference. The
reason this is a NOP (No-operation) is that when a timeout happens, the envent will be set to
sg.TIMEOUT_KEY . If a timeout is returned as the event, the code simply ignores it and restarts

the loop by executing a continue statement.

This timeout value of 200 means that your debugger GUI will be updated 5 times a second if
nothing is happening. If this adds too much "drag" to your application, you can make the
timeout larger. Try using 500 or 1000 instead of 100.

What happens if you don't add a timeout

Let's say you're in a situation where a very intermettent bug has just happened and the
debugger would really help you, but you don't have a timeout on your windows.Read() call.
It's OK. Recall that the way the debugger gets its "cycles" is to borrow from your Read calls.
What you need to do is alternate between using the debugger and then generating another
pass through your event loop.

Maybe it's an OK button that will cause your loop to execute again (without exiting). If so, you
can use it to help move the debugger along.

Yes, this is a major pain in the ass, but it's not THAT bad and compared to nothing in a time of
crisis and this is potentially your "savior tool" that's going to save your ass, pressing that OK
button a few times is going to look like nothing to you. You just want to dump out the value of
a variable that holds an instance of your class!

A Sample Program For Us To Use
Now that you understand how to add the debugger to your program, let's make a simple little
program that you can use to follow these examples:

170/511

import PySimpleGUI as sg

window = sg.Window('Testing the Debugger', [[sg.Text('Debugger Tester'), sg.In('Input here'), sg.B('Push
Me')]])

while True:
 event, values = window.Read(timeout=500)
 if event == sg.TIMEOUT_KEY:
 continue
 if event is None:
 break
 print(event, values)
window.Close()

Debugger Windows

"Popout Debugger Window"

There are 2 debugger windows. One is called the "Popout" debugger window. The Popout
window displays as many currently in-scope local variables as possible. This window is not
interactive. It is meant to be a frequently updated "dashboard" or "snapshot" of your variables.

One "variable" shown in the popout window that is an often asked for piece of information
when debugging Issues and that variable is sg (or whatever you named the PySimpleGUI
pacakge when you did your import). The assumption is that your import is import PySimpleGUI
as sg . If your import is different, then you'll see a different variable. The point is that it's
shown here.

Exiting this window is done via the little red X, or using the rickt-click menu which is also
used as one way to launch the Main Debugger Window

Ways of Launching the Popout Window

There are 3 ways of opening the Popout window.

1. Press the BREAK key on your keyboard.
2. Call the function show_debugger_popout_window(location=(x,y))
3. Add Debug() button to your layout - adds a little purple and yellow PySimpleGUI logo to

your window

When you are asked for the "Location of your PySimpleGUI package or
PySimpleGUI.py file" do this

If you wish to use the debugger to find the location of THIS running program's PySimpleGUI
package / the PySimpleGUI.py file, then all you need to do is: * Press the BREAK key on your
keyboard. * This is sometimes labelled as the Cancel key * May also have Pause printed on

171/511

key * On some US keyboards, it is located next to Scroll Lock and/or above PageUp key *
This will open a window located in the upper right corner of your screen that looks something
like this:

* The information you are seeking is shown next to the sg in the window You don't need to
modify your program to get this info using this technique.

If your variable's value is too long and doesn't fit, then you'lll need to collect this information
using the "Main Debugger Window"

What's NOT Listed In The Popout Debugger Window

The Popup window is a "Snapshot" of your local variables at the time the window was opened.
This means any variables that did not exist at the time the Popout was created will not
be shown. This window does NOT expand in size by adding new variables. Maybe in the
future.

The "Main Debugger Window"

Now we're talking serious Python debugging!

Ever wish you had a repl>>> prompt that you could run while your program is running. Well,
that's pretty much what you're getting with the PySimpleGUI debugger Main Window! Cool,
huh? If you're not impressed, go get a cup of coffee and walk off that distraction in your head
before carring on because we're in to some seriously cool shit here....

You'll find that this window has 2 tabs, one is labelled Variables and the other is labelled
REPL & Watches

Ways of Opening the Main Debugger Window

There are 3 ways to open the Main Debugger Window

1. Press Control + Break on your PC keyboard
2. From the Popout Debug Window, right click and choose Debugger from the right click

menu
3. From your code call show_debugger_window(location=(x,y))

The "Variables" Tab of Main Debugger Window

172/511

Notice the the "frame" surrounding this window is labelled "Auto Watches" in blue. Like the
Popup window, this debugger window also "Watches" variables, which means continuously
updates them as often as you call Window.Read .

The maximum number of "watches" you can have any any one time is 9.

Choosing variables to watch

You can simply click "Show All Variable" button and the list of watched variables will be
automatically populard by the first 9 variables it finds. Or you can click the "Choose Variables
to Auto Watch" button where you can individually choose what variables, and expressions
you wish to display.

173/511

In this window we're checking checkboxes to display these variables:

event , sg , values , window , __file__

Additionally, you can see at the bottom of the window a "Custom Watch" has been defined.
This can be any experession you want. Let's say you have a window with a LOT of values.
Rather than looking through the values variable and finding the entry with the key you are
looking for, the values variable's entry for a specific key is displayed.

In this example the Custom Watch entered was values[0] . After clicking on the "OK" button,
indicating the variables are chosen that we wish to watch, this is the Main window that is
shown:

174/511

We can see the variables we checked as well as the defined expression values[0] . If you leave
this window open, these values with continuously be updated, on the fly, every time we call the
line in our example code window.Read(timeout=500) . This means that the Main Debugger
Window and these variables we defined will be updated every 500 milliseconds.

The REPL & Watches Tab

175/511

This tab is provided to you as a way to interact with your running program on a real-time basis.

If you want to quickly look at the values of variables, nearly ANY variables, then type the
information into one of the 3 spaces provided to "Watch" either variables or experessions. In
this example, the variable window was typed into the first slow.

Immediately after typing the character 'w', the information to the right was displayed. No
button needs to be clicked. You merely neeed to type in a valid experession and it will be
displayed to you.... and it will be displayed on an on-going, constantly-refreshing-basis.

176/511

If the area to the right of the input field is too small, then you can click on the "Detail" button
and you will be shown a popup, scrolled window with all of the information displayed as if it
were printed.

I'm sure you've had the lovely experience of printing an object. When clicking the "Detail"
button next to the window variable being shown, this window is shown:

177/511

Oh, Python, -sigh-. I just want to see my window object printed.

Obj Button to the Rescue!

PySimpleGUI has a fun and very useful function that is discussed in the docs named
ObjToString which takes an object and converts it's contents it into a nicely formatted string.

This function is used to create the text output when you click the Obj button. The result is
this instead of the tiny window shown previously:

178/511

The REPL Prompt
179/511

While not really a Python REPL prompt, this window's REPL >>> prompt is meant to act as
much like one as possible. Here you can enter experessions and code too.

The uses for this prompt are so numerous and diverse that listing them all won't be
attempted.

Your "XRay" and "Endoscope" into Your Program

Think of this prompt as a way to get specific diagnostics information about your running
program. It cannot be stressed enough that the power and the usefullness of this tool is in its
ability to diagnose a running program, after you've already started it running.

Execute Code

In addition to displaying information, getting paths to packages, finding version information,
you can execute code from the PySimpleGUI Debugger's REPL >>> prompt. You can type in
any expression as well as any executable statement.

For example, want to see what PopupError looks like while you're running your program.
From the REPL prompt, type: sg.PopupError('This is an error popup')

The result is that you are shown a popup window with the text you supplied.

KNOW Answers to Questions About Your Program

Using this runtime tool, you can be confident in the data you collect. Right?

There's no better way to find what version of a package that your program is using than to
ask your program. This is so true. Think about it. Rather than go into PyCharm, look at your
project's "Virtual Environment", follow some path to get to a window that lists packages
installed for that project, get the verstion and your're done, right? Well, maybe. But are you
CERTAIN your program is using THAT version of the package in question?

SO MUCH time has been wasted in the past when people KNEW, for sure, what version they
were running. Or, they had NO CLUE what version, or no clue to find out. There's nothing
wrong with not knowing how to do something. We ALL start there. Geeez..

A real world example.....

How To Use the Debugger to Find The Version Number of a
Package
Let's pull together everything we've learned to now and use the debugger to solve a problem
that happens often and sometimes it's not at all obvious how to find the answer.

180/511

We're using Matplotlib and want to find the "Version".

For this example, the little 12-line program in the section "A Sample Program For Us To Use" is
being used.

That program does not import matplotlib . We have a couple of choices, we can change the
code, we can can import the package from the debugger. Let's use the debgger.

Pull up the Main Debugger Window by pressing CONTROL+BREAK keys. Then click the "REPL
* Watches" tab. At the >>> prompt we'll first import the package by typing: import matplotlib
as m

The result returned from Python calls that don't return anything is the value None. You will
see the command you entered in the output area followed by "None", indicating success.

finally, type: m.__version__

The entire set of operations is shown in this window:

181/511

By convention you'll find many modules have a variable __version__ that has the package's
version number. PySimpleGUI has one. As you can see matplotlib has one. The requests
module has this variable.

For maximum compatibility, PySimpleGUI not only uses __version__ , but also has the version
contained in another variable version which has the version number because in some
situations the __version__ is not available but the version variable is avaiable.

It is recommended that you use the variable version to get the PySimpleGUI version as
it's so far been the most successful method.

tkinter, however does NOT.... of course.... follow this convention. No, to get the tkinter version,
you need to look at the variable: TkVersion

182/511

Here's the output from the REPL in the debugger showing the tkinter version:

>>> import tkinter as t
None
>>> t.TkVersion
8.6
>>> t.__version__
Exception module 'tkinter' has no attribute '__version__'

Extending PySimpleGUI
PySimpleGUI doesn't and can't provide every single setting available in the underlying GUI
framework. Not all tkinter options are available for a Text Element. Same with
PySimpleGUIQt and the other ports.

There are a few of reasons for this.

1. Time & resource limits - The size of the PySimpleGUI development team is extremely
small

2. PySimpleGUI provides a "Unified API". This means the code is, in theory, portable across
all of the PySimpleGUI ports without chaning the user's code (except for the import)

3. PySimpleGUI is meant, by design, to be simple and cover 80% of the GUI problems.

However, PySimpleGUI programs are not dead ends!! Writing PySimpleGUI code and then
getting to a point where you really really feel like you need to extend the Listbox to include the
ability to change the "Selected" color. Maybe that's super-critical to your project. And maybe
you find out late that the base PySimpleGUI code doesn't expose that tkinter capability. Fear
not! The road does continue!!

Widget Access
Most of the user extensions / enhancements are at the "Element" level. You want some
Element to do a trick that you cannot do using the existing PySimpleGUI APIs. It's just not
possible. What to do?

What you need is access to the underlying GUI framework's "Widget". The good news is that
you HAVE that access ready and waiting for you, for all of the ports of PySimpleGUI, not just
the tkinter one.

Element.Widget is The GUI Widget

The class variable Widget contains the tkinter, Qt, WxPython, or Remi widget. With that
variable you can modify that widget directly.

183/511

You must first Read or Finalize the window before accessing the Widget class variable

The reason for the Finalize requirement is that until a Window is Read or is Finalized it is not
actually created and populated with GUI Widgets. The GUI Widgets are created when you do
these 2 operations.

Side note - You can stop using the .Finalize() call added onto your window creation and
instead use the finalize parameter in the Window call.

OLD WAY:

window = sg.Window('Window Title', layout).Finalize()

THE NEW WAY:

window = sg.Window('Window Title', layout, finalize=True)

It's cleaner and less confusing for beginners who aren't necessarily trained in how chaining
calls work. PySimpleGUI.

Example Use of Element.Widget
So far there have been 2 uses of this capability. One already mentioned is adding a new
capability. The other way it's been used has been to fix a bug or make a workaround for a
quirky behavior.

A recent Issue posted was that focus was always being set on a button in a tab when you
switch tabs in tkinter. The user didn't want this to happen as it was putting an ugly black line
around their nicely made graphical button.

There is no current way in PySimpleGUI to "disable focus" on an Element. That's essentially
what was needed, the ability to tell tkinter that this widget should never get focus.

There is a way to tell tkinter that a widget should not get focus. The downside is that if you use
your tab key to navigate, that element will never get focus. So, it's not only blocking focus for
this automatic problem, but blocking it for all uses. Of course you can still click on the button.

The way through for this user was to modify the tkinter widget directly and tell it not to get
focus. This was done in a single line of code:

window[button_key].Widget.config(takefocus=0)

The absolute beauty to this solution is that tkinter does NOT need to be imported into the
user's program for this statement to run. Python already know what kind of object .Widget is
and can thus show you the various methods and class variables for that object. Most all tkinter

184/511

options are strings so you don't need to import tkinter to get any enums.

Finding Your Element's Widget Type

Of course, in order to call the methods or access the object's class variables, you need to know
the type of the underlying Widget being used. This document could list them all, but the
downside is the widget could change types (not a good thing for people using the .Widget
already!). It also saves space and time in getting this documentation published and available to
you.

So, here's the way to get your element's widget's type:

 print(type(window[your_element_key].Widget))

In the case of the button example above, what is printed is:

<class 'tkinter.Button'>

I don't think that could be any clearer. Your job at this point is to look at the tkinter
documentation to see what the methods are for the tkinter Button widget.

Window Level Access
For this one you'll need some specific variables for the time being as there is no Window class
variable that holds the window's representation in the GUI library being used.

For tkinter, at the moment, the window's root object is this:

sg.Window.TKroot

The type will vary in PySimpleGUI. It will either be: tkinter.Tk() tkinter.Toplevel()

Either way you'll access it using the same Window variable sg.Window.TKroot

Watch this space in the future for the more standardized variable name for this object. It may
be something like Window.Widget as the Elements use or something like
Window.GUIWindow .

Binding tkiner "events"
If you wish to receive events directly from tkinter, but do it in a PySimpleGUI way, then there's
a particular way at the moment to make this happen.

tkinter performs a callback into user code when an event happens, but that's not how
PySimpleGUI works. Instead of callbacks, a PySimpleGUI user's program simply returns an
event via the window.read() call. In order for your "event" to generate an event that will be

185/511

returned to you via your read call, follow these instructions:

1. Create a Button for each event you wish to receive
2. Set visible=False when creating the buttons
3. Make the Button text be the event you want to see returned to you or set the button's

Key to that value
4. After creating / finalizing the window, make the tkinter bind call, passing

element.ButtonReboundCallback as the function to call.

This sample code binds not an element events but events from the window itself. In this case,
Focus events.

import PySimpleGUI as sg

layout = [[sg.Text('My Window')],
 [sg.Input(key='-IN-'), sg.Text('', key='-OUT-')],
 [sg.Button('Do Something'), sg.Button('Exit'),
 sg.Button('-FOCUS-IN-', visible=False), sg.Button('-FOCUS-OUT-', visible=False)]]

window = sg.Window('Window Title', layout, finalize=True)

window.TKroot.bind("<FocusIn>", window['-FOCUS-IN-'].ButtonReboundCallback)
window.TKroot.bind("<FocusOut>", window['-FOCUS-OUT-'].ButtonReboundCallback)

This code binds the right mouse button to a button so that you can right click a button and get
a different event than if you left clicked it.

import PySimpleGUI as sg

layout = [[sg.Text('My Window')],
 [sg.Input(key='-IN-'), sg.Text('', key='-OUT-')],
 [sg.Button('Do Something'), sg.Button('Right Click Me')],
 [sg.Button('-RIGHT-', visible=False)]
]

window = sg.Window('Window Title', layout, finalize=True)

window['Right Click Me'].Widget.bind("<Button-3>", window['-RIGHT-'].ButtonReboundCallback)

has_focus = True
while True:
 event, values = window.read()
 print(event, values)
 if event in (None, 'Exit'):
 break
window.close()

186/511

ELEMENT AND FUNCTION CALL REFERENCE
This reference section was previously intermixed with the text explanation, diagrams, code
samples, etc. That was OK early on, but now that there are more Elements and more methods
are being added on a fequent basis, it means that keeping this list updated is a difficult chore
if it has a lot of text all around it.

Hoping this is a change for the better and that users will be able to find the information they
seek quicker.

NOTE that this documentatiuopn section is created using the GitHUB released PySimpleGUI.py
file. Some of the calls may not be available to you or your port (Qt, Wx, Web). And some of the
parameters may be different. We're working on adding docstrings to all the ports which will
enable this kind of document to be available for each port.

Caution - Some functions / methods may be internal only yet
exposed in this documenation
This section of the documentation is generated directly from the source code. As a result,
sometimes internal only functions or methods that you are not supposed to be calling are
accidently shown in this documentation. Hopefully these accidents don't happen often.

Without further delay... here are all of the Elements and the Window class

Button Element

Button Element - Defines all possible buttons. The shortcuts such as Submit, FileBrowse, ... each create a
Button

187/511

Button(button_text="",
 button_type=7,
 target=(None, None),
 tooltip=None,
 file_types=(('ALL Files', '*.*'),),
 initial_folder=None,
 disabled=False,
 change_submits=False,
 enable_events=False,
 image_filename=None,
 image_data=None,
 image_size=(None, None),
 image_subsample=None,
 border_width=None,
 size=(None, None),
 auto_size_button=None,
 button_color=None,
 font=None,
 bind_return_key=False,
 focus=False,
 pad=None,
 key=None,
 visible=True,
 metadata=None)

Parameter Descriptions:

Name Meaning

button_text (str) Text to be displayed on the button

button_type (int) You should NOT be setting this directly. ONLY the shortcut
functions set this

target Union[str, Tuple[int, int]] key or (row,col) target for the button.
Note that -1 for column means 1 element to the left of this one.
The constant ThisRow is used to indicate the current row. The
Button itself is a valid target for some types of button

tooltip (str) text, that will appear when mouse hovers over the element

file_types Tuple[Tuple[str, str], ...] the filetypes that will be used to match
files. To indicate all files: (("ALL Files", "."),). Note - NOT
SUPPORTED ON MAC

initial_folder (str) starting path for folders and files

disabled (bool) If True button will be created disabled

188/511

click_submits (bool) DO NOT USE. Only listed for backwards compat - Use
enable_events instead

enable_events (bool) Turns on the element specific events. If this button is a
target, should it generate an event when filled in

image_filename (str) image filename if there is a button image. GIFs and PNGs
only.

image_data Union[bytes, str] Raw or Base64 representation of the image to
put on button. Choose either filename or data

image_size Tuple[int, int] Size of the image in pixels (width, height)

image_subsample (int) amount to reduce the size of the image. Divides the size by
this number. 2=1/2, 3=1/3, 4=1/4, etc

border_width (int) width of border around button in pixels

size Tuple[int, int] (width, height) of the button in characters wide,
rows high

auto_size_button (bool) if True the button size is sized to fit the text

button_color Tuple[str, str] (text color, background color) of button. Easy to
remember which is which if you say "ON" between colors. "red"
on "green". Note - Does not always work on Macs

font Union[str, Tuple[str, int]] specifies the font family, size, etc

bind_return_key (bool) If True the return key will cause this button to be pressed

focus (bool) if True, initial focus will be put on this button

pad (int, int) or ((int, int),(int,int)) Amount of padding to put around
element (left/right, top/bottom) or ((left, right), (top, bottom))

key (Any) Used with window.FindElement and with return values to
uniquely identify this element to uniquely identify this element

visible (bool) set visibility state of the element

metadata (Any) User metadata that can be set to ANYTHING

Name Meaning

189/511

ButtonCallBack

Not user callable! Called by tkinter when a button is clicked. This is where all the fun begins!

ButtonCallBack()

ButtonPressCallBack

Not a user callable method. Callback called by tkinter when a "realtime" button is pressed

ButtonPressCallBack(parm)

Parameter Descriptions:

Name Meaning

parm Event info passed in by tkinter

ButtonReboundCallback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

ButtonReboundCallback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

ButtonReleaseCallBack

Not a user callable function. Called by tkinter when a "realtime" button is released

ButtonReleaseCallBack(parm)

Parameter Descriptions:

Name Meaning

190/511

parm the event info from
tkinter

Name Meaning

Click

Generates a click of the button as if the user clicked the button Calls the tkinter invoke method
for the button

Click()

GetText

Returns the current text shown on a button

GetText()

Name Meaning

return (str) The text currently displayed on the
button

SetFocus

Sets the current focus to be on this element

SetFocus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

SetTooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

SetTooltip(tooltip_text)

Parameter Descriptions:

191/511

Name Meaning

tooltip_text (str) the text to show in
tooltip.

Update

Changes some of the settings for the Button Element. Must call Window.Read or
Window.Finalize prior

Update(text=None,
 button_color=(None, None),
 disabled=None,
 image_data=None,
 image_filename=None,
 visible=None,
 image_subsample=None,
 image_size=None)

Parameter Descriptions:

Name Meaning

text (str) sets button text

button_color Tuple[str, str] (text color, background color) of button. Easy to
remember which is which if you say "ON" between colors. "red"
on "green"

disabled (bool) disable or enable state of the element

image_data Union[bytes, str] Raw or Base64 representation of the image to
put on button. Choose either filename or data

image_filename (str) image filename if there is a button image. GIFs and PNGs
only.

visible (bool) control visibility of element

image_subsample (int) amount to reduce the size of the image. Divides the size by
this number. 2=1/2, 3=1/3, 4=1/4, etc

image_size Tuple[int, int] Size of the image in pixels (width, height)

button_rebound_callback
192/511

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

button_rebound_callback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

click

Generates a click of the button as if the user clicked the button Calls the tkinter invoke method
for the button

click()

expand

Causes the Element to expand to fill available space in the X and Y directions. Can specify
which or both directions

expand(expand_x=False, expand_y=False)

Parameter Descriptions:

Name Meaning

expand_x (Bool) If True Element will expand in the Horizontal
directions

expand_y (Bool) If True Element will expand in the Vertical directions

get_size

Return the size of an element in Pixels. Care must be taken as some elements use characters
to specify their size but will return pixels when calling this get_size method.

get_size()

193/511

Name Meaning

return Tuple[int, int] - Width, Height of the
element

get_text

Returns the current text shown on a button

get_text()

Name Meaning

return (str) The text currently displayed on the
button

hide_row

Hide the entire row an Element is located on. Use this if you must have all space removed
when you are hiding an element, including the row container

hide_row()

set_focus

Sets the current focus to be on this element

set_focus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

set_size

Changes the size of an element to a specific size. It's possible to specify None for one of sizes
so that only 1 of the element's dimensions are changed.

set_size(size=(None, None))

Parameter Descriptions:

194/511

Name Meaning

size Tuple[int, int] The size in characters, rows typically. In some cases they are
pixels

set_tooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

set_tooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

unhide_row

Unhides (makes visible again) the row container that the Element is located on. Note that it will
re-appear at the bottom of the window / container, most likely.

unhide_row()

update

Changes some of the settings for the Button Element. Must call Window.Read or
Window.Finalize prior

update(text=None,
 button_color=(None, None),
 disabled=None,
 image_data=None,
 image_filename=None,
 visible=None,
 image_subsample=None,
 image_size=None)

Parameter Descriptions:

Name Meaning

text (str) sets button text

195/511

button_color Tuple[str, str] (text color, background color) of button. Easy to
remember which is which if you say "ON" between colors. "red"
on "green"

disabled (bool) disable or enable state of the element

image_data Union[bytes, str] Raw or Base64 representation of the image to
put on button. Choose either filename or data

image_filename (str) image filename if there is a button image. GIFs and PNGs
only.

visible (bool) control visibility of element

image_subsample (int) amount to reduce the size of the image. Divides the size by
this number. 2=1/2, 3=1/3, 4=1/4, etc

image_size Tuple[int, int] Size of the image in pixels (width, height)

Name Meaning

The Button Menu Element. Creates a button that when clicked will show a menu similar to right click menu

ButtonMenu(button_text,
 menu_def,
 tooltip=None,
 disabled=False,
 image_filename=None,
 image_data=None,
 image_size=(None, None),
 image_subsample=None,
 border_width=None,
 size=(None, None),
 auto_size_button=None,
 button_color=None,
 font=None,
 pad=None,
 key=None,
 tearoff=False,
 visible=True,
 metadata=None)

Parameter Descriptions:

Name Meaning

button_text (str) Text to be displayed on the button

196/511

menu_def List[List[str]] A list of lists of Menu items to show when this
element is clicked. See docs for format as they are the same for
all menu types

tooltip (str) text, that will appear when mouse hovers over the element

disabled (bool) If True button will be created disabled

image_filename (str) image filename if there is a button image. GIFs and PNGs
only.

image_data Union[bytes, str] Raw or Base64 representation of the image to
put on button. Choose either filename or data

image_size Tuple[int, int] Size of the image in pixels (width, height)

image_subsample (int) amount to reduce the size of the image. Divides the size by
this number. 2=1/2, 3=1/3, 4=1/4, etc

border_width (int) width of border around button in pixels

size Tuple[int, int] (width, height) of the button in characters wide,
rows high

auto_size_button (bool) if True the button size is sized to fit the text

button_color Tuple[str, str] (text color, background color) of button. Easy to
remember which is which if you say "ON" between colors. "red"
on "green"

font Union[str, Tuple[str, int]] specifies the font family, size, etc

pad (int, int) or ((int, int),(int,int)) Amount of padding to put around
element (left/right, top/bottom) or ((left, right), (top, bottom))

key (Any) Used with window.FindElement and with return values to
uniquely identify this element to uniquely identify this element

tearoff (bool) Determines if menus should allow them to be torn off

visible (bool) set visibility state of the element

metadata (Any) User metadata that can be set to ANYTHING

Name Meaning

197/511

ButtonReboundCallback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

ButtonReboundCallback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

Click

Generates a click of the button as if the user clicked the button Calls the tkinter invoke method
for the button

Click()

SetFocus

Sets the current focus to be on this element

SetFocus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

SetTooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

SetTooltip(tooltip_text)

Parameter Descriptions:

198/511

Name Meaning

tooltip_text (str) the text to show in
tooltip.

Update

Changes some of the settings for the ButtonMenu Element. Must call Window.Read or
Window.Finalize prior

Update(menu_definition, visible=None)

Parameter Descriptions:

Name Meaning

menu_definition (List[List]) New menu definition (in menu definition
format)

visible (bool) control visibility of element

button_rebound_callback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

button_rebound_callback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

expand

Causes the Element to expand to fill available space in the X and Y directions. Can specify
which or both directions

expand(expand_x=False, expand_y=False)

199/511

Parameter Descriptions:

Name Meaning

expand_x (Bool) If True Element will expand in the Horizontal
directions

expand_y (Bool) If True Element will expand in the Vertical directions

get_size

Return the size of an element in Pixels. Care must be taken as some elements use characters
to specify their size but will return pixels when calling this get_size method.

get_size()

Name Meaning

return Tuple[int, int] - Width, Height of the
element

hide_row

Hide the entire row an Element is located on. Use this if you must have all space removed
when you are hiding an element, including the row container

hide_row()

set_focus

Sets the current focus to be on this element

set_focus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

set_size

200/511

Changes the size of an element to a specific size. It's possible to specify None for one of sizes
so that only 1 of the element's dimensions are changed.

set_size(size=(None, None))

Parameter Descriptions:

Name Meaning

size Tuple[int, int] The size in characters, rows typically. In some cases they are
pixels

set_tooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

set_tooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

unhide_row

Unhides (makes visible again) the row container that the Element is located on. Note that it will
re-appear at the bottom of the window / container, most likely.

unhide_row()

update

Changes some of the settings for the ButtonMenu Element. Must call Window.Read or
Window.Finalize prior

update(menu_definition, visible=None)

Parameter Descriptions:

Name Meaning

201/511

menu_definition (List[List]) New menu definition (in menu definition
format)

visible (bool) control visibility of element

Name Meaning

Canvas Element

Canvas(canvas=None,
 background_color=None,
 size=(None, None),
 pad=None,
 key=None,
 tooltip=None,
 right_click_menu=None,
 visible=True,
 metadata=None)

Parameter Descriptions:

Name Meaning

canvas (tk.Canvas) Your own tk.Canvas if you already created it. Leave
blank to create a Canvas

background_color (str) color of background

size Tuple[int,int] (width in char, height in rows) size in pixels to make
canvas

pad Amount of padding to put around element

key (Any) Used with window.FindElement and with return values to
uniquely identify this element

tooltip (str) text, that will appear when mouse hovers over the element

right_click_menu List[List[Union[List[str],str]]] A list of lists of Menu items to show
when this element is right clicked. See user docs for exact format.

visible (bool) set visibility state of the element

metadata (Any) User metadata that can be set to ANYTHING

202/511

ButtonReboundCallback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

ButtonReboundCallback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

SetFocus

Sets the current focus to be on this element

SetFocus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

SetTooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

SetTooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

TKCanvas
203/511

property: TKCanvas

button_rebound_callback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

button_rebound_callback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

expand

Causes the Element to expand to fill available space in the X and Y directions. Can specify
which or both directions

expand(expand_x=False, expand_y=False)

Parameter Descriptions:

Name Meaning

expand_x (Bool) If True Element will expand in the Horizontal
directions

expand_y (Bool) If True Element will expand in the Vertical directions

get_size

Return the size of an element in Pixels. Care must be taken as some elements use characters
to specify their size but will return pixels when calling this get_size method.

get_size()

Name Meaning

204/511

return Tuple[int, int] - Width, Height of the
element

Name Meaning

hide_row

Hide the entire row an Element is located on. Use this if you must have all space removed
when you are hiding an element, including the row container

hide_row()

set_focus

Sets the current focus to be on this element

set_focus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

set_size

Changes the size of an element to a specific size. It's possible to specify None for one of sizes
so that only 1 of the element's dimensions are changed.

set_size(size=(None, None))

Parameter Descriptions:

Name Meaning

size Tuple[int, int] The size in characters, rows typically. In some cases they are
pixels

set_tooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

205/511

set_tooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

tk_canvas

property: tk_canvas

unhide_row

Unhides (makes visible again) the row container that the Element is located on. Note that it will
re-appear at the bottom of the window / container, most likely.

unhide_row()

Checkbox Element

Checkbox Element - Displays a checkbox and text next to it

Checkbox(text,
 default=False,
 size=(None, None),
 auto_size_text=None,
 font=None,
 background_color=None,
 text_color=None,
 change_submits=False,
 enable_events=False,
 disabled=False,
 key=None,
 pad=None,
 tooltip=None,
 visible=True,
 metadata=None)

Parameter Descriptions:

Name Meaning

text (str) Text to display next to checkbox

206/511

default (bool). Set to True if you want this checkbox initially checked

size Tuple[int, int] (width, height) width = characters-wide, height =
rows-high

auto_size_text (bool) if True will size the element to match the length of the text

font Union[str, Tuple[str, int]] specifies the font family, size, etc

background_color (str) color of background

text_color (str) color of the text

change_submits (bool) DO NOT USE. Only listed for backwards compat - Use
enable_events instead

enable_events (bool) Turns on the element specific events. Checkbox events
happen when an item changes

disabled (bool) set disable state

key (Any) Used with window.FindElement and with return values to
uniquely identify this element

pad (int, int) or ((int, int),(int,int)) Amount of padding to put around
element (left/right, top/bottom) or ((left, right), (top, bottom))

tooltip (str) text, that will appear when mouse hovers over the element

visible (bool) set visibility state of the element

metadata (Any) User metadata that can be set to ANYTHING

Name Meaning

ButtonReboundCallback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

ButtonReboundCallback(event)

Parameter Descriptions:

207/511

Name Meaning

event (unknown) Not used in this
function.

Get

Return the current state of this checkbox

Get()

Name Meaning

return (bool) Current state of
checkbox

SetFocus

Sets the current focus to be on this element

SetFocus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

SetTooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

SetTooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

208/511

Update

Changes some of the settings for the Checkbox Element. Must call Window.Read or
Window.Finalize prior. Note that changing visibility may cause element to change locations

when made visible after invisible

Update(value=None,
 disabled=None,
 visible=None)

Parameter Descriptions:

Name Meaning

value (bool) if True checks the checkbox, False clears
it

disabled (bool) disable or enable element

visible (bool) control visibility of element

button_rebound_callback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

button_rebound_callback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

expand

Causes the Element to expand to fill available space in the X and Y directions. Can specify
which or both directions

expand(expand_x=False, expand_y=False)

Parameter Descriptions:

209/511

Name Meaning

expand_x (Bool) If True Element will expand in the Horizontal
directions

expand_y (Bool) If True Element will expand in the Vertical directions

get

Return the current state of this checkbox

get()

Name Meaning

return (bool) Current state of
checkbox

get_size

Return the size of an element in Pixels. Care must be taken as some elements use characters
to specify their size but will return pixels when calling this get_size method.

get_size()

Name Meaning

return Tuple[int, int] - Width, Height of the
element

hide_row

Hide the entire row an Element is located on. Use this if you must have all space removed
when you are hiding an element, including the row container

hide_row()

set_focus

Sets the current focus to be on this element

set_focus(force=False)

Parameter Descriptions:

210/511

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

set_size

Changes the size of an element to a specific size. It's possible to specify None for one of sizes
so that only 1 of the element's dimensions are changed.

set_size(size=(None, None))

Parameter Descriptions:

Name Meaning

size Tuple[int, int] The size in characters, rows typically. In some cases they are
pixels

set_tooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

set_tooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

unhide_row

Unhides (makes visible again) the row container that the Element is located on. Note that it will
re-appear at the bottom of the window / container, most likely.

unhide_row()

update

211/511

Changes some of the settings for the Checkbox Element. Must call Window.Read or
Window.Finalize prior. Note that changing visibility may cause element to change locations

when made visible after invisible

update(value=None,
 disabled=None,
 visible=None)

Parameter Descriptions:

Name Meaning

value (bool) if True checks the checkbox, False clears
it

disabled (bool) disable or enable element

visible (bool) control visibility of element

Column Element

A container element that is used to create a layout within your window's layout

Column(layout,
 background_color=None,
 size=(None, None),
 pad=None,
 scrollable=False,
 vertical_scroll_only=False,
 right_click_menu=None,
 key=None,
 visible=True,
 justification="left",
 element_justification="left",
 metadata=None)

Parameter Descriptions:

Name Meaning

layout List[List[Element]] Layout that will be shown in the Column
container

background_color (str) color of background of entire Column

212/511

size Tuple[int, int] (width, height) size in pixels (doesn't work quite
right, sometimes only 1 dimension is set by tkinter

pad (int, int) or ((int, int),(int,int)) Amount of padding to put around
element (left/right, top/bottom) or ((left, right), (top, bottom))

scrollable (bool) if True then scrollbars will be added to the column

vertical_scroll_only (bool) if Truen then no horizontal scrollbar will be shown

right_click_menu List[List[Union[List[str],str]]] A list of lists of Menu items to show
when this element is right clicked. See user docs for exact
format.

key (any) Value that uniquely identifies this element from all other
elements. Used when Finding an element or in return values.
Must be unique to the window

visible (bool) set visibility state of the element

justification (str) set justification for the Column itself. Note entire row
containing the Column will be affected

element_justification (str) All elements inside the Column will have this justification
'left', 'right', 'center' are valid values

metadata (Any) User metadata that can be set to ANYTHING

Name Meaning

AddRow

Not recommended user call. Used to add rows of Elements to the Column Element.

AddRow(args)

Parameter Descriptions:

Name Meaning

*args List[Element] The list of elements for this
row

ButtonReboundCallback
213/511

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

ButtonReboundCallback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

Layout

Can use like the Window.Layout method, but it's better to use the layout parameter when
creating

Layout(rows)

Parameter Descriptions:

Name Meaning

rows List[List[Element]] The rows of Elements

return (Column) Used for chaining

SetFocus

Sets the current focus to be on this element

SetFocus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

SetTooltip

214/511

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

SetTooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

Update

Changes some of the settings for the Column Element. Must call Window.Read or
Window.Finalize prior

Update(visible=None)

Parameter Descriptions:

Name Meaning

visible (bool) control visibility of
element

add_row

Not recommended user call. Used to add rows of Elements to the Column Element.

add_row(args)

Parameter Descriptions:

Name Meaning

*args List[Element] The list of elements for this
row

button_rebound_callback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback

215/511

function that is normally called.

button_rebound_callback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

expand

Causes the Element to expand to fill available space in the X and Y directions. Can specify
which or both directions

expand(expand_x=False, expand_y=False)

Parameter Descriptions:

Name Meaning

expand_x (Bool) If True Element will expand in the Horizontal
directions

expand_y (Bool) If True Element will expand in the Vertical directions

get_size

Return the size of an element in Pixels. Care must be taken as some elements use characters
to specify their size but will return pixels when calling this get_size method.

get_size()

Name Meaning

return Tuple[int, int] - Width, Height of the
element

hide_row

Hide the entire row an Element is located on. Use this if you must have all space removed
when you are hiding an element, including the row container

hide_row()
216/511

layout

Can use like the Window.Layout method, but it's better to use the layout parameter when
creating

layout(rows)

Parameter Descriptions:

Name Meaning

rows List[List[Element]] The rows of Elements

return (Column) Used for chaining

set_focus

Sets the current focus to be on this element

set_focus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

set_size

Changes the size of an element to a specific size. It's possible to specify None for one of sizes
so that only 1 of the element's dimensions are changed.

set_size(size=(None, None))

Parameter Descriptions:

Name Meaning

size Tuple[int, int] The size in characters, rows typically. In some cases they are
pixels

set_tooltip

217/511

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

set_tooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

unhide_row

Unhides (makes visible again) the row container that the Element is located on. Note that it will
re-appear at the bottom of the window / container, most likely.

unhide_row()

update

Changes some of the settings for the Column Element. Must call Window.Read or
Window.Finalize prior

update(visible=None)

Parameter Descriptions:

Name Meaning

visible (bool) control visibility of
element

Combo Element

ComboBox Element - A combination of a single-line input and a drop-down menu. User can type in their own
value or choose from list.

218/511

Combo(values,
 default_value=None,
 size=(None, None),
 auto_size_text=None,
 background_color=None,
 text_color=None,
 change_submits=False,
 enable_events=False,
 disabled=False,
 key=None,
 pad=None,
 tooltip=None,
 readonly=False,
 font=None,
 visible=True,
 metadata=None)

Parameter Descriptions:

Name Meaning

values List[Any] values to choose. While displayed as text, the items
returned are what the caller supplied, not text

default_value (Any) Choice to be displayed as initial value. Must match one of
values variable contents

size Tuple[int, int] (width, height) width = characters-wide, height =
rows-high

auto_size_text (bool) True if element should be the same size as the contents

background_color (str) color of background

text_color (str) color of the text

change_submits (bool) DEPRICATED DO NOT USE. Use enable_events instead

enable_events (bool) Turns on the element specific events. Combo event is when
a choice is made

disabled (bool) set disable state for element

key (Any) Used with window.FindElement and with return values to
uniquely identify this element

219/511

pad (int, int) or ((int, int),(int,int)) Amount of padding to put around
element (left/right, top/bottom) or ((left, right), (top, bottom))

tooltip (str) text that will appear when mouse hovers over this element

readonly (bool) make element readonly (user can't change). True means
user cannot change

font Union[str, Tuple[str, int]] specifies the font family, size, etc

visible (bool) set visibility state of the element

metadata (Any) User metadata that can be set to ANYTHING

Name Meaning

ButtonReboundCallback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

ButtonReboundCallback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

Get

Returns the current (right now) value of the Combo. DO NOT USE THIS AS THE NORMAL WAY
OF READING A COMBO! You should be using values from your call to window.Read instead.
Know what you're doing if you use it.

Get()

Name Meaning

return Union[Any, None] Returns the value of what is currently
chosen

220/511

SetFocus

Sets the current focus to be on this element

SetFocus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

SetTooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

SetTooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

Update

Changes some of the settings for the Combo Element. Must call Window.Read or
Window.Finalize prior

Update(value=None,
 values=None,
 set_to_index=None,
 disabled=None,
 readonly=None,
 font=None,
 visible=None)

Parameter Descriptions:

Name Meaning

221/511

value (Any) change which value is current selected hased on new list of
previous list of choices

values List[Any] change list of choices

set_to_index (int) change selection to a particular choice starting with index = 0

disabled (bool) disable or enable state of the element

readonly (bool) if True make element readonly (user cannot change any choices)

font Union[str, Tuple[str, int]] specifies the font family, size, etc

visible (bool) control visibility of element

Name Meaning

button_rebound_callback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

button_rebound_callback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

expand

Causes the Element to expand to fill available space in the X and Y directions. Can specify
which or both directions

expand(expand_x=False, expand_y=False)

Parameter Descriptions:

222/511

Name Meaning

expand_x (Bool) If True Element will expand in the Horizontal
directions

expand_y (Bool) If True Element will expand in the Vertical directions

get

Returns the current (right now) value of the Combo. DO NOT USE THIS AS THE NORMAL WAY
OF READING A COMBO! You should be using values from your call to window.Read instead.
Know what you're doing if you use it.

get()

Name Meaning

return Union[Any, None] Returns the value of what is currently
chosen

get_size

Return the size of an element in Pixels. Care must be taken as some elements use characters
to specify their size but will return pixels when calling this get_size method.

get_size()

Name Meaning

return Tuple[int, int] - Width, Height of the
element

hide_row

Hide the entire row an Element is located on. Use this if you must have all space removed
when you are hiding an element, including the row container

hide_row()

set_focus

Sets the current focus to be on this element

set_focus(force=False)

223/511

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

set_size

Changes the size of an element to a specific size. It's possible to specify None for one of sizes
so that only 1 of the element's dimensions are changed.

set_size(size=(None, None))

Parameter Descriptions:

Name Meaning

size Tuple[int, int] The size in characters, rows typically. In some cases they are
pixels

set_tooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

set_tooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

unhide_row

Unhides (makes visible again) the row container that the Element is located on. Note that it will
re-appear at the bottom of the window / container, most likely.

unhide_row()

update

224/511

Changes some of the settings for the Combo Element. Must call Window.Read or
Window.Finalize prior

update(value=None,
 values=None,
 set_to_index=None,
 disabled=None,
 readonly=None,
 font=None,
 visible=None)

Parameter Descriptions:

Name Meaning

value (Any) change which value is current selected hased on new list of
previous list of choices

values List[Any] change list of choices

set_to_index (int) change selection to a particular choice starting with index = 0

disabled (bool) disable or enable state of the element

readonly (bool) if True make element readonly (user cannot change any choices)

font Union[str, Tuple[str, int]] specifies the font family, size, etc

visible (bool) control visibility of element

Frame Element

A Frame Element that contains other Elements. Encloses with a line around elements and a text label.

225/511

Frame(title,
 layout,
 title_color=None,
 background_color=None,
 title_location=None,
 relief="groove",
 size=(None, None),
 font=None,
 pad=None,
 border_width=None,
 key=None,
 tooltip=None,
 right_click_menu=None,
 visible=True,
 element_justification="left",
 metadata=None)

Parameter Descriptions:

Name Meaning

title (str) text that is displayed as the Frame's "label" or title

layout List[List[Elements]] The layout to put inside the Frame

title_color (str) color of the title text

background_color (str) background color of the Frame

title_location (enum) location to place the text title. Choices include:
TITLE_LOCATION_TOP TITLE_LOCATION_BOTTOM
TITLE_LOCATION_LEFT TITLE_LOCATION_RIGHT
TITLE_LOCATION_TOP_LEFT TITLE_LOCATION_TOP_RIGHT
TITLE_LOCATION_BOTTOM_LEFT
TITLE_LOCATION_BOTTOM_RIGHT

relief (enum) relief style. Values are same as other elements with
reliefs. Choices include RELIEF_RAISED RELIEF_SUNKEN
RELIEF_FLAT RELIEF_RIDGE RELIEF_GROOVE RELIEF_SOLID

size Tuple[int, int] (width in characters, height in rows) (note this
parameter may not always work)

font Union[str, Tuple[str, int]] specifies the font family, size, etc

pad (int, int) or ((int, int),(int,int)) Amount of padding to put around
element (left/right, top/bottom) or ((left, right), (top, bottom))

226/511

border_width (int) width of border around element in pixels

key (any) Value that uniquely identifies this element from all other
elements. Used when Finding an element or in return values.
Must be unique to the window

tooltip (str) text, that will appear when mouse hovers over the element

right_click_menu List[List[Union[List[str],str]]] A list of lists of Menu items to show
when this element is right clicked. See user docs for exact
format.

visible (bool) set visibility state of the element

element_justification (str) All elements inside the Frame will have this justification
'left', 'right', 'center' are valid values

metadata (Any) User metadata that can be set to ANYTHING

Name Meaning

AddRow

Not recommended user call. Used to add rows of Elements to the Frame Element.

AddRow(args)

Parameter Descriptions:

Name Meaning

*args List[Element] The list of elements for this
row

ButtonReboundCallback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

ButtonReboundCallback(event)

Parameter Descriptions:

227/511

Name Meaning

event (unknown) Not used in this
function.

Layout

Can use like the Window.Layout method, but it's better to use the layout parameter when
creating

Layout(rows)

Parameter Descriptions:

Name Meaning

rows List[List[Element]] The rows of Elements

return (Frame) Used for chaining

SetFocus

Sets the current focus to be on this element

SetFocus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

SetTooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

SetTooltip(tooltip_text)

Parameter Descriptions:

228/511

Name Meaning

tooltip_text (str) the text to show in
tooltip.

Update

Changes some of the settings for the Frame Element. Must call Window.Read or
Window.Finalize prior

Update(value=None, visible=None)

Parameter Descriptions:

Name Meaning

value (Any) New text value to show on
frame

visible (bool) control visibility of element

add_row

Not recommended user call. Used to add rows of Elements to the Frame Element.

add_row(args)

Parameter Descriptions:

Name Meaning

*args List[Element] The list of elements for this
row

button_rebound_callback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

button_rebound_callback(event)

Parameter Descriptions:

229/511

Name Meaning

event (unknown) Not used in this
function.

expand

Causes the Element to expand to fill available space in the X and Y directions. Can specify
which or both directions

expand(expand_x=False, expand_y=False)

Parameter Descriptions:

Name Meaning

expand_x (Bool) If True Element will expand in the Horizontal
directions

expand_y (Bool) If True Element will expand in the Vertical directions

get_size

Return the size of an element in Pixels. Care must be taken as some elements use characters
to specify their size but will return pixels when calling this get_size method.

get_size()

Name Meaning

return Tuple[int, int] - Width, Height of the
element

hide_row

Hide the entire row an Element is located on. Use this if you must have all space removed
when you are hiding an element, including the row container

hide_row()

layout

Can use like the Window.Layout method, but it's better to use the layout parameter when
creating

230/511

layout(rows)

Parameter Descriptions:

Name Meaning

rows List[List[Element]] The rows of Elements

return (Frame) Used for chaining

set_focus

Sets the current focus to be on this element

set_focus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

set_size

Changes the size of an element to a specific size. It's possible to specify None for one of sizes
so that only 1 of the element's dimensions are changed.

set_size(size=(None, None))

Parameter Descriptions:

Name Meaning

size Tuple[int, int] The size in characters, rows typically. In some cases they are
pixels

set_tooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

set_tooltip(tooltip_text)

231/511

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

unhide_row

Unhides (makes visible again) the row container that the Element is located on. Note that it will
re-appear at the bottom of the window / container, most likely.

unhide_row()

update

Changes some of the settings for the Frame Element. Must call Window.Read or
Window.Finalize prior

update(value=None, visible=None)

Parameter Descriptions:

Name Meaning

value (Any) New text value to show on
frame

visible (bool) control visibility of element

Graph Element

Creates an area for you to draw on. The MAGICAL property this Element has is that you interact
with the element using your own coordinate system. This is an important point!! YOU define where the
location
is for (0,0). Want (0,0) to be in the middle of the graph like a math 4-quadrant graph? No problem! Set
your
lower left corner to be (-100,-100) and your upper right to be (100,100) and you've got yourself a graph with
(0,0) at the center.
One of THE coolest of the Elements.
You can also use float values. To do so, be sure and set the float_values parameter.
Mouse click and drag events are possible and return the (x,y) coordinates of the mouse
Drawing primitives return an "id" that is referenced when you want to operation on that item (e.g. to erase
it)

232/511

Graph(canvas_size,
 graph_bottom_left,
 graph_top_right,
 background_color=None,
 pad=None,
 change_submits=False,
 drag_submits=False,
 enable_events=False,
 key=None,
 tooltip=None,
 right_click_menu=None,
 visible=True,
 float_values=False,
 metadata=None)

Parameter Descriptions:

Name Meaning

canvas_size Tuple[int, int] (width, height) size of the canvas area in pixels

graph_bottom_left Tuple[int, int] (x,y) The bottoms left corner of your coordinate
system

graph_top_right Tuple[int, int] (x,y) The top right corner of your coordinate system

background_color (str) background color of the drawing area

pad (int, int) or ((int, int),(int,int)) Amount of padding to put around
element (left/right, top/bottom) or ((left, right), (top, bottom))

change_submits (bool) * DEPRICATED DO NOT USE! Same as enable_events

drag_submits (bool) if True and Events are enabled for the Graph, will report
Events any time the mouse moves while button down

enable_events (bool) If True then clicks on the Graph are immediately reported
as an event. Use this instead of change_submits

key (any) Value that uniquely identifies this element from all other
elements. Used when Finding an element or in return values.
Must be unique to the window

tooltip (str) text, that will appear when mouse hovers over the element

right_click_menu List[List[Union[List[str],str]]] A list of lists of Menu items to show
when this element is right clicked. See user docs for exact format.

233/511

visible (bool) set visibility state of the element (Default = True)

float_values (bool) If True x,y coordinates are returned as floats, not ints

metadata (Any) User metadata that can be set to ANYTHING

Name Meaning

BringFigureToFront

Changes Z-order of figures on the Graph. Brings the indicated figure to the front of all other
drawn figures

BringFigureToFront(figure)

Parameter Descriptions:

Name Meaning

figure (int) value returned by tkinter when creating the figure /
drawing

ButtonPressCallBack

Not a user callable method. Used to get Graph click events. Called by tkinter when button is
released

ButtonPressCallBack(event)

Parameter Descriptions:

Name Meaning

event (event) event info from tkinter. Contains the x and y coordinates of a
click

ButtonReboundCallback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

ButtonReboundCallback(event)

234/511

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

ButtonReleaseCallBack

Not a user callable method. Used to get Graph click events. Called by tkinter when button is
released

ButtonReleaseCallBack(event)

Parameter Descriptions:

Name Meaning

event (event) event info from tkinter. Note not used in this
method

DeleteFigure

Remove from the Graph the figure represented by id. The id is given to you anytime you call a
drawing primitive

DeleteFigure(id)

Parameter Descriptions:

Name Meaning

id (int) the id returned to you when calling one of the drawing
methods

DrawArc

Draws different types of arcs. Uses a "bounding box" to define location

DrawArc(top_left,
 bottom_right,
 extent,
 start_angle,
 style=None,
 arc_color="black")

235/511

Parameter Descriptions:

Name Meaning

top_left Union[Tuple[int, int], Tuple[float, float]] the top left point of bounding
rectangle

bottom_right Union[Tuple[int, int], Tuple[float, float]] the bottom right point of
bounding rectangle

extent (float) Andle to end drawing. Used in conjunction with start_angle

start_angle (float) Angle to begin drawing. Used in conjunction with extent

style (str) Valid choices are One of these Style strings- 'pieslice', 'chord', 'arc',
'first', 'last', 'butt', 'projecting', 'round', 'bevel', 'miter'

arc_color (str) color to draw arc with

return Union[int, None] id returned from tkinter that you'll need if you want to
manipulate the arc

DrawCircle

Draws a circle, cenetered at the location provided. Can set the fill and outline colors

DrawCircle(center_location,
 radius,
 fill_color=None,
 line_color="black")

Parameter Descriptions:

Name Meaning

center_location Union [Tuple[int, int], Tuple[float, float]] Center location using USER'S
coordinate system

radius Union[int, float] Radius in user's coordinate values.

fill_color (str) color of the point to draw

line_color (str) color of the outer line that goes around the circle (sorry, can't
set thickness)

236/511

return Union[int, None] id returned from tkinter that you'll need if you want
to manipulate the circle

Name Meaning

DrawImage

Places an image onto your canvas. It's a really important method for this element as it enables
so much

DrawImage(filename=None,
 data=None,
 location=(None, None),
 color="black",
 font=None,
 angle=0)

Parameter Descriptions:

Name Meaning

filename (str) if image is in a file, path and filename for the image. (GIF and PNG
only!)

data Union[str, bytes] if image is in Base64 format or raw? format then use
instead of filename

location Union[Tuple[int, int], Tuple[float, float]] the (x,y) location to place image's
top left corner

color (str) text color

font Union[str, Tuple[str, int]] specifies the font family, size, etc

angle (float) Angle 0 to 360 to draw the text. Zero represents horizontal text

return Union[int, None] id returned from tkinter that you'll need if you want to
manipulate the image

DrawLine

Draws a line from one point to another point using USER'S coordinates. Can set the color and
width of line

237/511

DrawLine(point_from,
 point_to,
 color="black",
 width=1)

Parameter Descriptions:

Name Meaning

point_from Union[Tuple[int, int], Tuple[float, float]] Starting point for line

point_to Union[Tuple[int, int], Tuple[float, float]] Ending point for line

color (str) Color of the line

width (int) width of line in pixels

return Union[int, None] id returned from tktiner or None if user closed the
window. id is used when you
want to manipulate the line

DrawOval

Draws an oval based on coordinates in user coordinate system. Provide the location of a
"bounding rectangle"

DrawOval(top_left,
 bottom_right,
 fill_color=None,
 line_color=None)

Parameter Descriptions:

Name Meaning

top_left Union[Tuple[int, int], Tuple[float, float]] the top left point of bounding
rectangle

bottom_right Union[Tuple[int, int], Tuple[float, float]] the bottom right point of
bounding rectangle

fill_color (str) color of the interrior

line_color (str) color of outline of oval

238/511

return Union[int, None] id returned from tkinter that you'll need if you want to
manipulate the oval

Name Meaning

DrawPoint

Draws a "dot" at the point you specify using the USER'S coordinate system

DrawPoint(point,
 size=2,
 color="black")

Parameter Descriptions:

Name Meaning

point Union [Tuple[int, int], Tuple[float, float]] Center location using USER'S
coordinate system

size Union[int, float] Radius? (Or is it the diameter?) in user's coordinate values.

color (str) color of the point to draw

return Union[int, None] id returned from tkinter that you'll need if you want to
manipulate the point

DrawRectangle

Draw a rectangle given 2 points. Can control the line and fill colors

DrawRectangle(top_left,
 bottom_right,
 fill_color=None,
 line_color=None,
 line_width=None)

Parameter Descriptions:

Name Meaning

top_left Union[Tuple[int, int], Tuple[float, float]] the top left point of rectangle

239/511

bottom_right Union[Tuple[int, int], Tuple[float, float]] the bottom right point of
rectangle

fill_color (str) color of the interior

line_color (str) color of outline

return Union[int, None] id returned from tkinter that you'll need if you want to
manipulate the rectangle

Name Meaning

DrawText

Draw some text on your graph. This is how you label graph number lines for example

DrawText(text,
 location,
 color="black",
 font=None,
 angle=0,
 text_location="center")

Parameter Descriptions:

Name Meaning

text (str) text to display

location Union[Tuple[int, int], Tuple[float, float]] location to place first letter

color (str) text color

font Union[str, Tuple[str, int]] specifies the font family, size, etc

angle (float) Angle 0 to 360 to draw the text. Zero represents horizontal text

text_location (enum) "anchor" location for the text. Values start with
TEXT_LOCATION_

return Union[int, None] id returned from tkinter that you'll need if you want to
manipulate the text

Erase
240/511

Erase the Graph - Removes all figures previously "drawn" using the Graph methods (e.g.
DrawText)

Erase()

MotionCallBack

Not a user callable method. Used to get Graph mouse motion events. Called by tkinter when
mouse moved

MotionCallBack(event)

Parameter Descriptions:

Name Meaning

event (event) event info from tkinter. Contains the x and y coordinates of a
mouse

Move

Moves the entire drawing area (the canvas) by some delta from the current position. Units are
indicated in your coordinate system indicated number of ticks in your coordinate system

Move(x_direction, y_direction)

Parameter Descriptions:

Name Meaning

x_direction Union[int, float] how far to move in the "X" direction in your
coordinates

y_direction Union[int, float] how far to move in the "Y" direction in your
coordinates

MoveFigure

Moves a previously drawn figure using a "delta" from current position

MoveFigure(figure,
 x_direction,
 y_direction)

Parameter Descriptions:

241/511

Name Meaning

figure (id) Previously obtained figure-id. These are returned from all Draw
methods

x_direction Union[int, float] delta to apply to position in the X direction

y_direction Union[int, float] delta to apply to position in the Y direction

RelocateFigure

Move a previously made figure to an arbitrary (x,y) location. This differs from the Move
methods because it uses absolute coordinates versus relative for Move

RelocateFigure(figure,
 x,
 y)

Parameter Descriptions:

Name Meaning

figure (id) Previously obtained figure-id. These are returned from all Draw methods

x Union[int, float] location on X axis (in user coords) to move the upper left
corner of the figure

y Union[int, float] location on Y axis (in user coords) to move the upper left
corner of the figure

SendFigureToBack

Changes Z-order of figures on the Graph. Sends the indicated figure to the back of all other
drawn figures

SendFigureToBack(figure)

Parameter Descriptions:

Name Meaning

figure (int) value returned by tkinter when creating the figure /
drawing

242/511

SetFocus

Sets the current focus to be on this element

SetFocus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

SetTooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

SetTooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

TKCanvas

property: TKCanvas

Update

Changes some of the settings for the Graph Element. Must call Window.Read or
Window.Finalize prior

Update(background_color=None, visible=None)

Parameter Descriptions:

Name Meaning

background_color color of background

243/511

visible (bool) control visibility of
element

Name Meaning

bring_figure_to_front

Changes Z-order of figures on the Graph. Brings the indicated figure to the front of all other
drawn figures

bring_figure_to_front(figure)

Parameter Descriptions:

Name Meaning

figure (int) value returned by tkinter when creating the figure /
drawing

button_press_call_back

Not a user callable method. Used to get Graph click events. Called by tkinter when button is
released

button_press_call_back(event)

Parameter Descriptions:

Name Meaning

event (event) event info from tkinter. Contains the x and y coordinates of a
click

button_rebound_callback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

button_rebound_callback(event)

Parameter Descriptions:

244/511

Name Meaning

event (unknown) Not used in this
function.

button_release_call_back

Not a user callable method. Used to get Graph click events. Called by tkinter when button is
released

button_release_call_back(event)

Parameter Descriptions:

Name Meaning

event (event) event info from tkinter. Note not used in this
method

delete_figure

Remove from the Graph the figure represented by id. The id is given to you anytime you call a
drawing primitive

delete_figure(id)

Parameter Descriptions:

Name Meaning

id (int) the id returned to you when calling one of the drawing
methods

draw_arc

Draws different types of arcs. Uses a "bounding box" to define location

draw_arc(top_left,
 bottom_right,
 extent,
 start_angle,
 style=None,
 arc_color="black")

Parameter Descriptions:
245/511

Name Meaning

top_left Union[Tuple[int, int], Tuple[float, float]] the top left point of bounding
rectangle

bottom_right Union[Tuple[int, int], Tuple[float, float]] the bottom right point of
bounding rectangle

extent (float) Andle to end drawing. Used in conjunction with start_angle

start_angle (float) Angle to begin drawing. Used in conjunction with extent

style (str) Valid choices are One of these Style strings- 'pieslice', 'chord', 'arc',
'first', 'last', 'butt', 'projecting', 'round', 'bevel', 'miter'

arc_color (str) color to draw arc with

return Union[int, None] id returned from tkinter that you'll need if you want to
manipulate the arc

draw_circle

Draws a circle, cenetered at the location provided. Can set the fill and outline colors

draw_circle(center_location,
 radius,
 fill_color=None,
 line_color="black")

Parameter Descriptions:

Name Meaning

center_location Union [Tuple[int, int], Tuple[float, float]] Center location using USER'S
coordinate system

radius Union[int, float] Radius in user's coordinate values.

fill_color (str) color of the point to draw

line_color (str) color of the outer line that goes around the circle (sorry, can't
set thickness)

246/511

return Union[int, None] id returned from tkinter that you'll need if you want
to manipulate the circle

Name Meaning

draw_image

Places an image onto your canvas. It's a really important method for this element as it enables
so much

draw_image(filename=None,
 data=None,
 location=(None, None),
 color="black",
 font=None,
 angle=0)

Parameter Descriptions:

Name Meaning

filename (str) if image is in a file, path and filename for the image. (GIF and PNG
only!)

data Union[str, bytes] if image is in Base64 format or raw? format then use
instead of filename

location Union[Tuple[int, int], Tuple[float, float]] the (x,y) location to place image's
top left corner

color (str) text color

font Union[str, Tuple[str, int]] specifies the font family, size, etc

angle (float) Angle 0 to 360 to draw the text. Zero represents horizontal text

return Union[int, None] id returned from tkinter that you'll need if you want to
manipulate the image

draw_line

Draws a line from one point to another point using USER'S coordinates. Can set the color and
width of line

247/511

draw_line(point_from,
 point_to,
 color="black",
 width=1)

Parameter Descriptions:

Name Meaning

point_from Union[Tuple[int, int], Tuple[float, float]] Starting point for line

point_to Union[Tuple[int, int], Tuple[float, float]] Ending point for line

color (str) Color of the line

width (int) width of line in pixels

return Union[int, None] id returned from tktiner or None if user closed the
window. id is used when you
want to manipulate the line

draw_oval

Draws an oval based on coordinates in user coordinate system. Provide the location of a
"bounding rectangle"

draw_oval(top_left,
 bottom_right,
 fill_color=None,
 line_color=None)

Parameter Descriptions:

Name Meaning

top_left Union[Tuple[int, int], Tuple[float, float]] the top left point of bounding
rectangle

bottom_right Union[Tuple[int, int], Tuple[float, float]] the bottom right point of
bounding rectangle

fill_color (str) color of the interrior

line_color (str) color of outline of oval

248/511

return Union[int, None] id returned from tkinter that you'll need if you want to
manipulate the oval

Name Meaning

draw_point

Draws a "dot" at the point you specify using the USER'S coordinate system

draw_point(point,
 size=2,
 color="black")

Parameter Descriptions:

Name Meaning

point Union [Tuple[int, int], Tuple[float, float]] Center location using USER'S
coordinate system

size Union[int, float] Radius? (Or is it the diameter?) in user's coordinate values.

color (str) color of the point to draw

return Union[int, None] id returned from tkinter that you'll need if you want to
manipulate the point

draw_rectangle

Draw a rectangle given 2 points. Can control the line and fill colors

draw_rectangle(top_left,
 bottom_right,
 fill_color=None,
 line_color=None,
 line_width=None)

Parameter Descriptions:

Name Meaning

top_left Union[Tuple[int, int], Tuple[float, float]] the top left point of rectangle

249/511

bottom_right Union[Tuple[int, int], Tuple[float, float]] the bottom right point of
rectangle

fill_color (str) color of the interior

line_color (str) color of outline

return Union[int, None] id returned from tkinter that you'll need if you want to
manipulate the rectangle

Name Meaning

draw_text

Draw some text on your graph. This is how you label graph number lines for example

draw_text(text,
 location,
 color="black",
 font=None,
 angle=0,
 text_location="center")

Parameter Descriptions:

Name Meaning

text (str) text to display

location Union[Tuple[int, int], Tuple[float, float]] location to place first letter

color (str) text color

font Union[str, Tuple[str, int]] specifies the font family, size, etc

angle (float) Angle 0 to 360 to draw the text. Zero represents horizontal text

text_location (enum) "anchor" location for the text. Values start with
TEXT_LOCATION_

return Union[int, None] id returned from tkinter that you'll need if you want to
manipulate the text

erase
250/511

Erase the Graph - Removes all figures previously "drawn" using the Graph methods (e.g.
DrawText)

erase()

expand

Causes the Element to expand to fill available space in the X and Y directions. Can specify
which or both directions

expand(expand_x=False, expand_y=False)

Parameter Descriptions:

Name Meaning

expand_x (Bool) If True Element will expand in the Horizontal
directions

expand_y (Bool) If True Element will expand in the Vertical directions

get_size

Return the size of an element in Pixels. Care must be taken as some elements use characters
to specify their size but will return pixels when calling this get_size method.

get_size()

Name Meaning

return Tuple[int, int] - Width, Height of the
element

hide_row

Hide the entire row an Element is located on. Use this if you must have all space removed
when you are hiding an element, including the row container

hide_row()

motion_call_back

Not a user callable method. Used to get Graph mouse motion events. Called by tkinter when
mouse moved

251/511

motion_call_back(event)

Parameter Descriptions:

Name Meaning

event (event) event info from tkinter. Contains the x and y coordinates of a
mouse

move

Moves the entire drawing area (the canvas) by some delta from the current position. Units are
indicated in your coordinate system indicated number of ticks in your coordinate system

move(x_direction, y_direction)

Parameter Descriptions:

Name Meaning

x_direction Union[int, float] how far to move in the "X" direction in your
coordinates

y_direction Union[int, float] how far to move in the "Y" direction in your
coordinates

move_figure

Moves a previously drawn figure using a "delta" from current position

move_figure(figure,
 x_direction,
 y_direction)

Parameter Descriptions:

Name Meaning

figure (id) Previously obtained figure-id. These are returned from all Draw
methods

x_direction Union[int, float] delta to apply to position in the X direction

y_direction Union[int, float] delta to apply to position in the Y direction

252/511

relocate_figure

Move a previously made figure to an arbitrary (x,y) location. This differs from the Move
methods because it uses absolute coordinates versus relative for Move

relocate_figure(figure,
 x,
 y)

Parameter Descriptions:

Name Meaning

figure (id) Previously obtained figure-id. These are returned from all Draw methods

x Union[int, float] location on X axis (in user coords) to move the upper left
corner of the figure

y Union[int, float] location on Y axis (in user coords) to move the upper left
corner of the figure

send_figure_to_back

Changes Z-order of figures on the Graph. Sends the indicated figure to the back of all other
drawn figures

send_figure_to_back(figure)

Parameter Descriptions:

Name Meaning

figure (int) value returned by tkinter when creating the figure /
drawing

set_focus

Sets the current focus to be on this element

set_focus(force=False)

Parameter Descriptions:

253/511

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

set_size

Changes the size of an element to a specific size. It's possible to specify None for one of sizes
so that only 1 of the element's dimensions are changed.

set_size(size=(None, None))

Parameter Descriptions:

Name Meaning

size Tuple[int, int] The size in characters, rows typically. In some cases they are
pixels

set_tooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

set_tooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

tk_canvas

property: tk_canvas

unhide_row

Unhides (makes visible again) the row container that the Element is located on. Note that it will
re-appear at the bottom of the window / container, most likely.

unhide_row()

254/511

update

Changes some of the settings for the Graph Element. Must call Window.Read or
Window.Finalize prior

update(background_color=None, visible=None)

Parameter Descriptions:

Name Meaning

background_color color of background

visible (bool) control visibility of
element

Image Element

Image Element - show an image in the window. Should be a GIF or a PNG only

Image(filename=None,
 data=None,
 background_color=None,
 size=(None, None),
 pad=None,
 key=None,
 tooltip=None,
 right_click_menu=None,
 visible=True,
 enable_events=False,
 metadata=None)

Parameter Descriptions:

Name Meaning

filename (str) image filename if there is a button image. GIFs and PNGs
only.

data Union[bytes, str] Raw or Base64 representation of the image to
put on button. Choose either filename or data

background_color color of background

size Tuple[int, int] (width, height) size of image in pixels

255/511

pad (int, int) or ((int, int),(int,int)) Amount of padding to put around
element (left/right, top/bottom) or ((left, right), (top, bottom))

key (Any) Used with window.FindElement and with return values to
uniquely identify this element to uniquely identify this element

tooltip (str) text, that will appear when mouse hovers over the element

right_click_menu List[List[Union[List[str],str]]] A list of lists of Menu items to show
when this element is right clicked. See user docs for exact format.

visible (bool) set visibility state of the element

enable_events (bool) Turns on the element specific events. For an Image
element, the event is "image clicked"

metadata (Any) User metadata that can be set to ANYTHING

Name Meaning

ButtonReboundCallback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

ButtonReboundCallback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

SetFocus

Sets the current focus to be on this element

SetFocus(force=False)

Parameter Descriptions:

256/511

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

SetTooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

SetTooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

Update

Changes some of the settings for the Image Element. Must call Window.Read or
Window.Finalize prior

Update(filename=None,
 data=None,
 size=(None, None),
 visible=None)

Parameter Descriptions:

Name Meaning

filename (str) filename to the new image to display.

data Union[str, tkPhotoImage] Base64 encoded string OR a tk.PhotoImage
object

size Tuple[int,int] size of a image (w,h) w=characters-wide, h=rows-high

visible (bool) control visibility of element

UpdateAnimation

Show an Animated GIF. Call the function as often as you like. The function will determine when
257/511

to show the next frame and will automatically advance to the next frame at the right time.
NOTE - does NOT perform a sleep call to delay

UpdateAnimation(source, time_between_frames=0)

Parameter Descriptions:

Name Meaning

source Union[str,bytes] Filename or Base64 encoded string
containing Animated GIF

time_between_frames (int) Number of milliseconds to wait between showing frames

button_rebound_callback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

button_rebound_callback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

expand

Causes the Element to expand to fill available space in the X and Y directions. Can specify
which or both directions

expand(expand_x=False, expand_y=False)

Parameter Descriptions:

Name Meaning

expand_x (Bool) If True Element will expand in the Horizontal
directions

258/511

expand_y (Bool) If True Element will expand in the Vertical directions

Name Meaning

get_size

Return the size of an element in Pixels. Care must be taken as some elements use characters
to specify their size but will return pixels when calling this get_size method.

get_size()

Name Meaning

return Tuple[int, int] - Width, Height of the
element

hide_row

Hide the entire row an Element is located on. Use this if you must have all space removed
when you are hiding an element, including the row container

hide_row()

set_focus

Sets the current focus to be on this element

set_focus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

set_size

Changes the size of an element to a specific size. It's possible to specify None for one of sizes
so that only 1 of the element's dimensions are changed.

set_size(size=(None, None))

Parameter Descriptions:

259/511

Name Meaning

size Tuple[int, int] The size in characters, rows typically. In some cases they are
pixels

set_tooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

set_tooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

unhide_row

Unhides (makes visible again) the row container that the Element is located on. Note that it will
re-appear at the bottom of the window / container, most likely.

unhide_row()

update

Changes some of the settings for the Image Element. Must call Window.Read or
Window.Finalize prior

update(filename=None,
 data=None,
 size=(None, None),
 visible=None)

Parameter Descriptions:

Name Meaning

filename (str) filename to the new image to display.

data Union[str, tkPhotoImage] Base64 encoded string OR a tk.PhotoImage
object

260/511

size Tuple[int,int] size of a image (w,h) w=characters-wide, h=rows-high

visible (bool) control visibility of element

Name Meaning

update_animation

Show an Animated GIF. Call the function as often as you like. The function will determine when
to show the next frame and will automatically advance to the next frame at the right time.
NOTE - does NOT perform a sleep call to delay

update_animation(source, time_between_frames=0)

Parameter Descriptions:

Name Meaning

source Union[str,bytes] Filename or Base64 encoded string
containing Animated GIF

time_between_frames (int) Number of milliseconds to wait between showing frames

InputText Element

Display a single text input field. Based on the tkinter Widget `Entry`

InputText(default_text="",
 size=(None, None),
 disabled=False,
 password_char="",
 justification=None,
 background_color=None,
 text_color=None,
 font=None,
 tooltip=None,
 change_submits=False,
 enable_events=False,
 do_not_clear=True,
 key=None,
 focus=False,
 pad=None,
 right_click_menu=None,
 visible=True,
 metadata=None)

Parameter Descriptions:
261/511

Name Meaning

default_text (str) Text initially shown in the input box as a default value(Default
value = '')

size Tuple[int, int] (width, height) w=characters-wide, h=rows-high

disabled (bool) set disable state for element (Default = False)

password_char (char) Password character if this is a password field (Default value
= '')

justification (str) justification for data display. Valid choices - left, right, center

background_color (str) color of background in one of the color formats

text_color (str) color of the text

font Union[str, Tuple[str, int]] specifies the font family, size, etc

tooltip (str) text, that will appear when mouse hovers over the element

change_submits (bool) * DEPRICATED DO NOT USE! Same as enable_events

enable_events (bool) If True then changes to this element are immediately
reported as an event. Use this instead of change_submits (Default
= False)

do_not_clear (bool) If False then the field will be set to blank after ANY event
(button, any event) (Default = True)

key (any) Value that uniquely identifies this element from all other
elements. Used when Finding an element or in return values. Must
be unique to the window

focus (bool) Determines if initial focus should go to this element.

pad (int, int) or ((int, int), (int, int)) Tuple(s). Amount of padding to put
around element. Normally (horizontal pixels, vertical pixels) but
can be split apart further into ((horizontal left, horizontal right),
(vertical above, vertical below))

right_click_menu List[List[Union[List[str],str]]] A list of lists of Menu items to show
when this element is right clicked. See user docs for exact format.

262/511

visible (bool) set visibility state of the element (Default = True)

metadata (Any) User metadata that can be set to ANYTHING

Name Meaning

ButtonReboundCallback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

ButtonReboundCallback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

Get

Read and return the current value of the input element. Must call Window.Read or
Window.Finalize prior

Get()

Name Meaning

return (str) current value of Input field or '' if error
encountered

SetFocus

Sets the current focus to be on this element

SetFocus(force=False)

Parameter Descriptions:

263/511

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

SetTooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

SetTooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

Update

Changes some of the settings for the Input Element. Must call Window.Read or
Window.Finalize prior

Update(value=None,
 disabled=None,
 select=None,
 visible=None,
 text_color=None,
 background_color=None,
 move_cursor_to="end")

Parameter Descriptions:

Name Meaning

value (str) new text to display as default text in Input field

disabled (bool) disable or enable state of the element (sets Entry Widget to
readonly or normal)

select (bool) if True, then the text will be selected

visible (bool) change visibility of element

264/511

text_color (str) change color of text being typed

background_color (str) change color of the background

move_cursor_to Union[int, str] Moves the cursor to a particular offset. Defaults to
'end'

Name Meaning

button_rebound_callback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

button_rebound_callback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

expand

Causes the Element to expand to fill available space in the X and Y directions. Can specify
which or both directions

expand(expand_x=False, expand_y=False)

Parameter Descriptions:

Name Meaning

expand_x (Bool) If True Element will expand in the Horizontal
directions

expand_y (Bool) If True Element will expand in the Vertical directions

get

265/511

Read and return the current value of the input element. Must call Window.Read or
Window.Finalize prior

get()

Name Meaning

return (str) current value of Input field or '' if error
encountered

get_size

Return the size of an element in Pixels. Care must be taken as some elements use characters
to specify their size but will return pixels when calling this get_size method.

get_size()

Name Meaning

return Tuple[int, int] - Width, Height of the
element

hide_row

Hide the entire row an Element is located on. Use this if you must have all space removed
when you are hiding an element, including the row container

hide_row()

set_focus

Sets the current focus to be on this element

set_focus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

set_size

266/511

Changes the size of an element to a specific size. It's possible to specify None for one of sizes
so that only 1 of the element's dimensions are changed.

set_size(size=(None, None))

Parameter Descriptions:

Name Meaning

size Tuple[int, int] The size in characters, rows typically. In some cases they are
pixels

set_tooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

set_tooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

unhide_row

Unhides (makes visible again) the row container that the Element is located on. Note that it will
re-appear at the bottom of the window / container, most likely.

unhide_row()

update

Changes some of the settings for the Input Element. Must call Window.Read or
Window.Finalize prior

update(value=None,
 disabled=None,
 select=None,
 visible=None,
 text_color=None,
 background_color=None,
 move_cursor_to="end")

267/511

Parameter Descriptions:

Name Meaning

value (str) new text to display as default text in Input field

disabled (bool) disable or enable state of the element (sets Entry Widget to
readonly or normal)

select (bool) if True, then the text will be selected

visible (bool) change visibility of element

text_color (str) change color of text being typed

background_color (str) change color of the background

move_cursor_to Union[int, str] Moves the cursor to a particular offset. Defaults to
'end'

Listbox Element

A List Box. Provide a list of values for the user to choose one or more of. Returns a list of selected rows
when a window.Read() is executed.

Listbox(values,
 default_values=None,
 select_mode=None,
 change_submits=False,
 enable_events=False,
 bind_return_key=False,
 size=(None, None),
 disabled=False,
 auto_size_text=None,
 font=None,
 no_scrollbar=False,
 background_color=None,
 text_color=None,
 key=None,
 pad=None,
 tooltip=None,
 right_click_menu=None,
 visible=True,
 metadata=None)

Parameter Descriptions:

268/511

Name Meaning

values List[Any] list of values to display. Can be any type including mixed
types as long as they have str method

default_values List[Any] which values should be initially selected

select_mode [enum] Select modes are used to determine if only 1 item can be
selected or multiple and how they can be selected. Valid choices
begin with "LISTBOX_SELECT_MODE_" and include:
LISTBOX_SELECT_MODE_SINGLE
LISTBOX_SELECT_MODE_MULTIPLE
LISTBOX_SELECT_MODE_BROWSE
LISTBOX_SELECT_MODE_EXTENDED

change_submits (bool) DO NOT USE. Only listed for backwards compat - Use
enable_events instead

enable_events (bool) Turns on the element specific events. Listbox generates
events when an item is clicked

bind_return_key (bool) If True, then the return key will cause a the Listbox to
generate an event

size Tuple(int, int) (width, height) width = characters-wide, height =
rows-high

disabled (bool) set disable state for element

auto_size_text (bool) True if element should be the same size as the contents

font Union[str, Tuple[str, int]] specifies the font family, size, etc

background_color (str) color of background

text_color (str) color of the text

key (Any) Used with window.FindElement and with return values to
uniquely identify this element

pad (int, int) or ((int, int),(int,int)) Amount of padding to put around
element (left/right, top/bottom) or ((left, right), (top, bottom))

tooltip (str) text, that will appear when mouse hovers over the element

269/511

right_click_menu List[List[Union[List[str],str]]] A list of lists of Menu items to show
when this element is right clicked. See user docs for exact format.

visible (bool) set visibility state of the element

metadata (Any) User metadata that can be set to ANYTHING

Name Meaning

ButtonReboundCallback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

ButtonReboundCallback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

GetIndexes

Returns the items currently selected as a list of indexes

GetIndexes()

Name Meaning

return List[int] A list of offsets into values that is currently
selected

GetListValues

Returns list of Values provided by the user in the user's format

GetListValues()

270/511

Name Meaning

return List[Any]. List of values. Can be any / mixed types -> []

SetFocus

Sets the current focus to be on this element

SetFocus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

SetTooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

SetTooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

SetValue

Set listbox highlighted choices

SetValue(values)

Parameter Descriptions:

Name Meaning

values List[Any] new values to choose based on previously set
values

271/511

Update

Changes some of the settings for the Listbox Element. Must call Window.Read or
Window.Finalize prior

Update(values=None,
 disabled=None,
 set_to_index=None,
 scroll_to_index=None,
 visible=None)

Parameter Descriptions:

Name Meaning

values List[Any] new list of choices to be shown to user

disabled (bool) disable or enable state of the element

set_to_index Union[int, list, tuple] highlights the item(s) indicated. If parm is an int
one entry will be set. If is a list, then each entry in list is highlighted

scroll_to_index (int) scroll the listbox so that this index is the first shown

visible (bool) control visibility of element

button_rebound_callback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

button_rebound_callback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

expand

272/511

Causes the Element to expand to fill available space in the X and Y directions. Can specify
which or both directions

expand(expand_x=False, expand_y=False)

Parameter Descriptions:

Name Meaning

expand_x (Bool) If True Element will expand in the Horizontal
directions

expand_y (Bool) If True Element will expand in the Vertical directions

get_indexes

Returns the items currently selected as a list of indexes

get_indexes()

Name Meaning

return List[int] A list of offsets into values that is currently
selected

get_list_values

Returns list of Values provided by the user in the user's format

get_list_values()

Name Meaning

return List[Any]. List of values. Can be any / mixed types -> []

get_size

Return the size of an element in Pixels. Care must be taken as some elements use characters
to specify their size but will return pixels when calling this get_size method.

get_size()

273/511

Name Meaning

return Tuple[int, int] - Width, Height of the
element

hide_row

Hide the entire row an Element is located on. Use this if you must have all space removed
when you are hiding an element, including the row container

hide_row()

set_focus

Sets the current focus to be on this element

set_focus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

set_size

Changes the size of an element to a specific size. It's possible to specify None for one of sizes
so that only 1 of the element's dimensions are changed.

set_size(size=(None, None))

Parameter Descriptions:

Name Meaning

size Tuple[int, int] The size in characters, rows typically. In some cases they are
pixels

set_tooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

274/511

set_tooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

set_value

Set listbox highlighted choices

set_value(values)

Parameter Descriptions:

Name Meaning

values List[Any] new values to choose based on previously set
values

unhide_row

Unhides (makes visible again) the row container that the Element is located on. Note that it will
re-appear at the bottom of the window / container, most likely.

unhide_row()

update

Changes some of the settings for the Listbox Element. Must call Window.Read or
Window.Finalize prior

update(values=None,
 disabled=None,
 set_to_index=None,
 scroll_to_index=None,
 visible=None)

Parameter Descriptions:

Name Meaning

values List[Any] new list of choices to be shown to user

275/511

disabled (bool) disable or enable state of the element

set_to_index Union[int, list, tuple] highlights the item(s) indicated. If parm is an int
one entry will be set. If is a list, then each entry in list is highlighted

scroll_to_index (int) scroll the listbox so that this index is the first shown

visible (bool) control visibility of element

Name Meaning

Menu Element is the Element that provides a Menu Bar that goes across the top of the window, just below
titlebar.
Here is an example layout. The "&" are shortcut keys ALT+key.
Is a List of - "Item String" + List
Where Item String is what will be displayed on the Menubar itself.
The List that follows the item represents the items that are shown then Menu item is clicked
Notice how an "entry" in a mennu can be a list which means it branches out and shows another menu, etc.
(resursive)
menu_def = [['&File', ['!&Open', '&Save::savekey', '---', '&Properties', 'E&xit']],
 ['!&Edit', ['!&Paste', ['Special', 'Normal',], 'Undo'],],
 ['&Debugger', ['Popout', 'Launch Debugger']],
 ['&Toolbar', ['Command &1', 'Command &2', 'Command &3', 'Command &4']],
 ['&Help', '&About...'],]
Finally, "keys" can be added to entries so make them unique. The "Save" entry has a key associated with it.
You
can see it has a "::" which signifies the beginning of a key. The user will not see the key portion when the
menu is shown. The key portion is returned as part of the event.

Menu(menu_definition,
 background_color=None,
 size=(None, None),
 tearoff=False,
 pad=None,
 key=None,
 visible=True,
 metadata=None)

Parameter Descriptions:

Name Meaning

menu_definition List[List[Tuple[str, List[str]]]

background_color (str) color of the background

size Tuple[int, int] Not used in the tkinter port

276/511

tearoff (bool) if True, then can tear the menu off from the window ans
use as a floating window. Very cool effect

pad (int, int) or ((int, int),(int,int)) Amount of padding to put around
element (left/right, top/bottom) or ((left, right), (top, bottom))

key (any) Value that uniquely identifies this element from all other
elements. Used when Finding an element or in return values. Must
be unique to the window

visible (bool) set visibility state of the element

metadata (Any) User metadata that can be set to ANYTHING

Name Meaning

ButtonReboundCallback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

ButtonReboundCallback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

SetFocus

Sets the current focus to be on this element

SetFocus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

277/511

SetTooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

SetTooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

Update

Update a menubar - can change the menu definition and visibility. The entire menu has to be
specified

Update(menu_definition=None, visible=None)

Parameter Descriptions:

Name Meaning

menu_definition List[List[Tuple[str, List[str]]]

visible (bool) control visibility of
element

button_rebound_callback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

button_rebound_callback(event)

Parameter Descriptions:

Name Meaning

278/511

event (unknown) Not used in this
function.

Name Meaning

expand

Causes the Element to expand to fill available space in the X and Y directions. Can specify
which or both directions

expand(expand_x=False, expand_y=False)

Parameter Descriptions:

Name Meaning

expand_x (Bool) If True Element will expand in the Horizontal
directions

expand_y (Bool) If True Element will expand in the Vertical directions

get_size

Return the size of an element in Pixels. Care must be taken as some elements use characters
to specify their size but will return pixels when calling this get_size method.

get_size()

Name Meaning

return Tuple[int, int] - Width, Height of the
element

hide_row

Hide the entire row an Element is located on. Use this if you must have all space removed
when you are hiding an element, including the row container

hide_row()

set_focus

Sets the current focus to be on this element

279/511

set_focus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

set_size

Changes the size of an element to a specific size. It's possible to specify None for one of sizes
so that only 1 of the element's dimensions are changed.

set_size(size=(None, None))

Parameter Descriptions:

Name Meaning

size Tuple[int, int] The size in characters, rows typically. In some cases they are
pixels

set_tooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

set_tooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

unhide_row

Unhides (makes visible again) the row container that the Element is located on. Note that it will
re-appear at the bottom of the window / container, most likely.

unhide_row()

280/511

update

Update a menubar - can change the menu definition and visibility. The entire menu has to be
specified

update(menu_definition=None, visible=None)

Parameter Descriptions:

Name Meaning

menu_definition List[List[Tuple[str, List[str]]]

visible (bool) control visibility of
element

Multiline Element

Multiline Element - Display and/or read multiple lines of text. This is both an input and output element.
Other PySimpleGUI ports have a separate MultilineInput and MultilineOutput elements. May want to split this
one up in the future too.

Multiline(default_text="",
 enter_submits=False,
 disabled=False,
 autoscroll=False,
 border_width=None,
 size=(None, None),
 auto_size_text=None,
 background_color=None,
 text_color=None,
 change_submits=False,
 enable_events=False,
 do_not_clear=True,
 key=None,
 focus=False,
 font=None,
 pad=None,
 tooltip=None,
 right_click_menu=None,
 visible=True,
 metadata=None)

Parameter Descriptions:

281/511

Name Meaning

default_text (str) Initial text to show

enter_submits (bool) if True, the Window.Read call will return is enter key is
pressed in this element

disabled (bool) set disable state

autoscroll (bool) If True the contents of the element will automatically scroll
as more data added to the end

border_width (int) width of border around element in pixels

size Tuple[int, int] (width, height) width = characters-wide, height =
rows-high

auto_size_text (bool) if True will size the element to match the length of the text

background_color (str) color of background

text_color (str) color of the text

change_submits (bool) DO NOT USE. Only listed for backwards compat - Use
enable_events instead

enable_events (bool) Turns on the element specific events. Spin events happen
when an item changes

do_not_clear if False the element will be cleared any time the Window.Read call
returns

key (Any) Used with window.FindElement and with return values to
uniquely identify this element to uniquely identify this element

focus (bool) if True initial focus will go to this element

font Union[str, Tuple[str, int]] specifies the font family, size, etc

pad (int, int) or ((int, int),(int,int)) Amount of padding to put around
element (left/right, top/bottom) or ((left, right), (top, bottom))

tooltip (str) text, that will appear when mouse hovers over the element

right_click_menu List[List[Union[List[str],str]]] A list of lists of Menu items to show
when this element is right clicked. See user docs for exact format.

282/511

visible (bool) set visibility state of the element

metadata (Any) User metadata that can be set to ANYTHING

Name Meaning

ButtonReboundCallback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

ButtonReboundCallback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

Get

Return current contents of the Multiline Element

Get()

Name Meaning

return (str) current contents of the Multiline Element (used as an input type of
Multiline

SetFocus

Sets the current focus to be on this element

SetFocus(force=False)

Parameter Descriptions:

Name Meaning

283/511

force (bool) if True will call focus_force otherwise calls
focus_set

Name Meaning

SetTooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

SetTooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

Update

Changes some of the settings for the Multiline Element. Must call Window.Read or
Window.Finalize prior

Update(value=None,
 disabled=None,
 append=False,
 font=None,
 text_color=None,
 background_color=None,
 visible=None,
 autoscroll=None)

Parameter Descriptions:

Name Meaning

value (str) new text to display

disabled (bool) disable or enable state of the element

append (bool) if True then new value will be added onto the end of the
current value. if False then contents will be replaced.

font Union[str, Tuple[str, int]] specifies the font family, size, etc

284/511

text_color (str) color of the text

background_color (str) color of background

visible (bool) set visibility state of the element

autoscroll (bool) if True then contents of element are scrolled down when
new text is added to the end

Name Meaning

button_rebound_callback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

button_rebound_callback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

expand

Causes the Element to expand to fill available space in the X and Y directions. Can specify
which or both directions

expand(expand_x=False, expand_y=False)

Parameter Descriptions:

Name Meaning

expand_x (Bool) If True Element will expand in the Horizontal
directions

expand_y (Bool) If True Element will expand in the Vertical directions

get
285/511

Return current contents of the Multiline Element

get()

Name Meaning

return (str) current contents of the Multiline Element (used as an input type of
Multiline

get_size

Return the size of an element in Pixels. Care must be taken as some elements use characters
to specify their size but will return pixels when calling this get_size method.

get_size()

Name Meaning

return Tuple[int, int] - Width, Height of the
element

hide_row

Hide the entire row an Element is located on. Use this if you must have all space removed
when you are hiding an element, including the row container

hide_row()

set_focus

Sets the current focus to be on this element

set_focus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

set_size

286/511

Changes the size of an element to a specific size. It's possible to specify None for one of sizes
so that only 1 of the element's dimensions are changed.

set_size(size=(None, None))

Parameter Descriptions:

Name Meaning

size Tuple[int, int] The size in characters, rows typically. In some cases they are
pixels

set_tooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

set_tooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

unhide_row

Unhides (makes visible again) the row container that the Element is located on. Note that it will
re-appear at the bottom of the window / container, most likely.

unhide_row()

update

Changes some of the settings for the Multiline Element. Must call Window.Read or
Window.Finalize prior

update(value=None,
 disabled=None,
 append=False,
 font=None,
 text_color=None,
 background_color=None,
 visible=None,
 autoscroll=None)

287/511

Parameter Descriptions:

Name Meaning

value (str) new text to display

disabled (bool) disable or enable state of the element

append (bool) if True then new value will be added onto the end of the
current value. if False then contents will be replaced.

font Union[str, Tuple[str, int]] specifies the font family, size, etc

text_color (str) color of the text

background_color (str) color of background

visible (bool) set visibility state of the element

autoscroll (bool) if True then contents of element are scrolled down when
new text is added to the end

Option Menu is an Element available ONLY on the tkinter port of PySimpleGUI. It's is a widget that is unique
to tkinter. However, it looks much like a ComboBox. Instead of an arrow to click to pull down the list of
choices, another little graphic is shown on the widget to indicate where you click. After clicking to activate,
it looks like a Combo Box that you scroll to select a choice.

OptionMenu(values,
 default_value=None,
 size=(None, None),
 disabled=False,
 auto_size_text=None,
 background_color=None,
 text_color=None,
 key=None,
 pad=None,
 tooltip=None,
 visible=True,
 metadata=None)

Parameter Descriptions:

Name Meaning

values List[Any] Values to be displayed

default_value (Any) the value to choose by default

288/511

size Tuple[int, int] (width, height) size in characters (wide) and rows
(high)

disabled (bool) control enabled / disabled

auto_size_text (bool) True if size of Element should match the contents of the
items

background_color (str) color of background

text_color (str) color of the text

key (Any) Used with window.FindElement and with return values to
uniquely identify this element

pad (int, int) or ((int, int),(int,int)) Amount of padding to put around
element (left/right, top/bottom) or ((left, right), (top, bottom))

tooltip (str) text that will appear when mouse hovers over this element

visible (bool) set visibility state of the element

metadata (Any) User metadata that can be set to ANYTHING

Name Meaning

ButtonReboundCallback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

ButtonReboundCallback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

SetFocus

Sets the current focus to be on this element
289/511

SetFocus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

SetTooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

SetTooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

Update

Changes some of the settings for the OptionMenu Element. Must call Window.Read or
Window.Finalize prior

Update(value=None,
 values=None,
 disabled=None,
 visible=None)

Parameter Descriptions:

Name Meaning

value (Any) the value to choose by default

values List[Any] Values to be displayed

disabled (bool) disable or enable state of the
element

visible (bool) control visibility of element

290/511

button_rebound_callback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

button_rebound_callback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

expand

Causes the Element to expand to fill available space in the X and Y directions. Can specify
which or both directions

expand(expand_x=False, expand_y=False)

Parameter Descriptions:

Name Meaning

expand_x (Bool) If True Element will expand in the Horizontal
directions

expand_y (Bool) If True Element will expand in the Vertical directions

get_size

Return the size of an element in Pixels. Care must be taken as some elements use characters
to specify their size but will return pixels when calling this get_size method.

get_size()

Name Meaning

return Tuple[int, int] - Width, Height of the
element

291/511

hide_row

Hide the entire row an Element is located on. Use this if you must have all space removed
when you are hiding an element, including the row container

hide_row()

set_focus

Sets the current focus to be on this element

set_focus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

set_size

Changes the size of an element to a specific size. It's possible to specify None for one of sizes
so that only 1 of the element's dimensions are changed.

set_size(size=(None, None))

Parameter Descriptions:

Name Meaning

size Tuple[int, int] The size in characters, rows typically. In some cases they are
pixels

set_tooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

set_tooltip(tooltip_text)

Parameter Descriptions:

292/511

Name Meaning

tooltip_text (str) the text to show in
tooltip.

unhide_row

Unhides (makes visible again) the row container that the Element is located on. Note that it will
re-appear at the bottom of the window / container, most likely.

unhide_row()

update

Changes some of the settings for the OptionMenu Element. Must call Window.Read or
Window.Finalize prior

update(value=None,
 values=None,
 disabled=None,
 visible=None)

Parameter Descriptions:

Name Meaning

value (Any) the value to choose by default

values List[Any] Values to be displayed

disabled (bool) disable or enable state of the
element

visible (bool) control visibility of element

Output Element

Output Element - a multi-lined text area where stdout and stderr are re-routed to.

293/511

Output(size=(None, None),
 background_color=None,
 text_color=None,
 pad=None,
 font=None,
 tooltip=None,
 key=None,
 right_click_menu=None,
 visible=True,
 metadata=None)

Parameter Descriptions:

Name Meaning

size Tuple[int, int] (w,h) w=characters-wide, h=rows-high

background_color (str) color of background

text_color (str) color of the text

pad (int, int) or ((int, int),(int,int)) Amount of padding to put around
element (left/right, top/bottom) or ((left, right), (top, bottom))

font Union[str, Tuple[str, int]] specifies the font family, size, etc

tooltip (str) text, that will appear when mouse hovers over the element

key (Any) Used with window.FindElement and with return values to
uniquely identify this element to uniquely identify this element

right_click_menu List[List[Union[List[str],str]]] A list of lists of Menu items to show
when this element is right clicked. See user docs for exact format.

visible (bool) set visibility state of the element

metadata (Any) User metadata that can be set to ANYTHING

ButtonReboundCallback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

ButtonReboundCallback(event)

294/511

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

Get

Returns the current contents of the output. Similar to Get method other Elements

Get()

Name Meaning

return (str) the current value of the
output

SetFocus

Sets the current focus to be on this element

SetFocus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

SetTooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

SetTooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

295/511

TKOut

property: TKOut

Update

Changes some of the settings for the Output Element. Must call Window.Read or
Window.Finalize prior

Update(value=None, visible=None)

Parameter Descriptions:

Name Meaning

value (str) string that will replace current contents of the output
area

visible (bool) control visibility of element

button_rebound_callback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

button_rebound_callback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

expand

Causes the Element to expand to fill available space in the X and Y directions. Can specify
which or both directions

expand(expand_x=False, expand_y=False)

Parameter Descriptions:

296/511

Name Meaning

expand_x (Bool) If True Element will expand in the Horizontal
directions

expand_y (Bool) If True Element will expand in the Vertical directions

get_size

Return the size of an element in Pixels. Care must be taken as some elements use characters
to specify their size but will return pixels when calling this get_size method.

get_size()

Name Meaning

return Tuple[int, int] - Width, Height of the
element

hide_row

Hide the entire row an Element is located on. Use this if you must have all space removed
when you are hiding an element, including the row container

hide_row()

set_focus

Sets the current focus to be on this element

set_focus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

set_size

Changes the size of an element to a specific size. It's possible to specify None for one of sizes
so that only 1 of the element's dimensions are changed.

297/511

set_size(size=(None, None))

Parameter Descriptions:

Name Meaning

size Tuple[int, int] The size in characters, rows typically. In some cases they are
pixels

set_tooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

set_tooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

tk_out

property: tk_out

unhide_row

Unhides (makes visible again) the row container that the Element is located on. Note that it will
re-appear at the bottom of the window / container, most likely.

unhide_row()

update

Changes some of the settings for the Output Element. Must call Window.Read or
Window.Finalize prior

update(value=None, visible=None)

Parameter Descriptions:

298/511

Name Meaning

value (str) string that will replace current contents of the output
area

visible (bool) control visibility of element

Pane Element

A sliding Pane that is unique to tkinter. Uses Columns to create individual panes

Pane(pane_list,
 background_color=None,
 size=(None, None),
 pad=None,
 orientation="vertical",
 show_handle=True,
 relief="raised",
 handle_size=None,
 border_width=None,
 key=None,
 visible=True,
 metadata=None)

Parameter Descriptions:

Name Meaning

pane_list List[Column] Must be a list of Column Elements. Each Column
supplied becomes one pane that's shown

background_color (str) color of background

size Tuple[int, int] (w,h) w=characters-wide, h=rows-high How much
room to reserve for the Pane

pad (int, int) or ((int, int),(int,int)) Amount of padding to put around
element (left/right, top/bottom) or ((left, right), (top, bottom))

orientation (str) 'horizontal' or 'vertical' or ('h' or 'v'). Direction the Pane should
slide

show_handle (bool) if True, the handle is drawn that makes it easier to grab and
slide

299/511

relief (enum) relief style. Values are same as other elements that use
relief values. RELIEF_RAISED RELIEF_SUNKEN RELIEF_FLAT
RELIEF_RIDGE RELIEF_GROOVE RELIEF_SOLID

handle_size (int) Size of the handle in pixels

border_width (int) width of border around element in pixels

key (any) Value that uniquely identifies this element from all other
elements. Used when Finding an element or in return values. Must
be unique to the window

visible (bool) set visibility state of the element

metadata (Any) User metadata that can be set to ANYTHING

Name Meaning

ButtonReboundCallback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

ButtonReboundCallback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

SetFocus

Sets the current focus to be on this element

SetFocus(force=False)

Parameter Descriptions:

300/511

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

SetTooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

SetTooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

Update

Changes some of the settings for the Pane Element. Must call Window.Read or
Window.Finalize prior

Update(visible=None)

Parameter Descriptions:

Name Meaning

visible (bool) control visibility of
element

button_rebound_callback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

button_rebound_callback(event)

Parameter Descriptions:

301/511

Name Meaning

event (unknown) Not used in this
function.

expand

Causes the Element to expand to fill available space in the X and Y directions. Can specify
which or both directions

expand(expand_x=False, expand_y=False)

Parameter Descriptions:

Name Meaning

expand_x (Bool) If True Element will expand in the Horizontal
directions

expand_y (Bool) If True Element will expand in the Vertical directions

get_size

Return the size of an element in Pixels. Care must be taken as some elements use characters
to specify their size but will return pixels when calling this get_size method.

get_size()

Name Meaning

return Tuple[int, int] - Width, Height of the
element

hide_row

Hide the entire row an Element is located on. Use this if you must have all space removed
when you are hiding an element, including the row container

hide_row()

set_focus

Sets the current focus to be on this element

302/511

set_focus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

set_size

Changes the size of an element to a specific size. It's possible to specify None for one of sizes
so that only 1 of the element's dimensions are changed.

set_size(size=(None, None))

Parameter Descriptions:

Name Meaning

size Tuple[int, int] The size in characters, rows typically. In some cases they are
pixels

set_tooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

set_tooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

unhide_row

Unhides (makes visible again) the row container that the Element is located on. Note that it will
re-appear at the bottom of the window / container, most likely.

unhide_row()

303/511

update

Changes some of the settings for the Pane Element. Must call Window.Read or
Window.Finalize prior

update(visible=None)

Parameter Descriptions:

Name Meaning

visible (bool) control visibility of
element

ProgressBar Element

Progress Bar Element - Displays a colored bar that is shaded as progress of some operation is made

ProgressBar(max_value,
 orientation=None,
 size=(None, None),
 auto_size_text=None,
 bar_color=(None, None),
 style=None,
 border_width=None,
 relief=None,
 key=None,
 pad=None,
 visible=True,
 metadata=None)

Parameter Descriptions:

Name Meaning

max_value (int) max value of progressbar

orientation (str) 'horizontal' or 'vertical'

size Tuple[int, int] Size of the bar. If horizontal (chars wide, pixels high),
vert (pixels wide, rows high)

auto_size_text (bool) Not sure why this is here

bar_color Tuple[str, str] The 2 colors that make up a progress bar. One is the
background, the other is the bar

304/511

style (str) Progress bar style defined as one of these 'default', 'winnative',
'clam', 'alt', 'classic', 'vista', 'xpnative'

border_width (int) The amount of pixels that go around the outside of the bar

relief (str) relief style. Values are same as progress meter relief values. Can
be a constant or a string: RELIEF_RAISED RELIEF_SUNKEN RELIEF_FLAT
RELIEF_RIDGE RELIEF_GROOVE RELIEF_SOLID (Default value =
DEFAULT_PROGRESS_BAR_RELIEF)

key (Any) Used with window.FindElement and with return values to
uniquely identify this element to uniquely identify this element

pad (int, int) or ((int, int),(int,int)) Amount of padding to put around element
(left/right, top/bottom) or ((left, right), (top, bottom))

visible (bool) set visibility state of the element

metadata (Any) User metadata that can be set to ANYTHING

Name Meaning

ButtonReboundCallback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

ButtonReboundCallback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

SetFocus

Sets the current focus to be on this element

SetFocus(force=False)

Parameter Descriptions:
305/511

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

SetTooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

SetTooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

Update

Changes some of the settings for the ProgressBar Element. Must call Window.Read or
Window.Finalize prior

Update(visible=None)

Parameter Descriptions:

Name Meaning

visible (bool) control visibility of
element

UpdateBar

Change what the bar shows by changing the current count and optionally the max count

UpdateBar(current_count, max=None)

Parameter Descriptions:

Name Meaning

current_count (int) sets the current value

306/511

max (int) changes the max
value

Name Meaning

button_rebound_callback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

button_rebound_callback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

expand

Causes the Element to expand to fill available space in the X and Y directions. Can specify
which or both directions

expand(expand_x=False, expand_y=False)

Parameter Descriptions:

Name Meaning

expand_x (Bool) If True Element will expand in the Horizontal
directions

expand_y (Bool) If True Element will expand in the Vertical directions

get_size

Return the size of an element in Pixels. Care must be taken as some elements use characters
to specify their size but will return pixels when calling this get_size method.

get_size()

307/511

Name Meaning

return Tuple[int, int] - Width, Height of the
element

hide_row

Hide the entire row an Element is located on. Use this if you must have all space removed
when you are hiding an element, including the row container

hide_row()

set_focus

Sets the current focus to be on this element

set_focus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

set_size

Changes the size of an element to a specific size. It's possible to specify None for one of sizes
so that only 1 of the element's dimensions are changed.

set_size(size=(None, None))

Parameter Descriptions:

Name Meaning

size Tuple[int, int] The size in characters, rows typically. In some cases they are
pixels

set_tooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

308/511

set_tooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

unhide_row

Unhides (makes visible again) the row container that the Element is located on. Note that it will
re-appear at the bottom of the window / container, most likely.

unhide_row()

update

Changes some of the settings for the ProgressBar Element. Must call Window.Read or
Window.Finalize prior

update(visible=None)

Parameter Descriptions:

Name Meaning

visible (bool) control visibility of
element

update_bar

Change what the bar shows by changing the current count and optionally the max count

update_bar(current_count, max=None)

Parameter Descriptions:

Name Meaning

current_count (int) sets the current value

max (int) changes the max
value

309/511

Radio Element

Radio Button Element - Used in a group of other Radio Elements to provide user with ability to select only
1 choice in a list of choices.

Radio(text,
 group_id,
 default=False,
 disabled=False,
 size=(None, None),
 auto_size_text=None,
 background_color=None,
 text_color=None,
 font=None,
 key=None,
 pad=None,
 tooltip=None,
 change_submits=False,
 enable_events=False,
 visible=True,
 metadata=None)

Parameter Descriptions:

Name Meaning

text (str) Text to display next to button

group_id (Any) Groups together multiple Radio Buttons. Any type works

default (bool). Set to True for the one element of the group you want
initially selected

disabled (bool) set disable state

size Tuple[int, int] (width, height) width = characters-wide, height =
rows-high

auto_size_text (bool) if True will size the element to match the length of the text

background_color (str) color of background

text_color (str) color of the text

font Union[str, Tuple[str, int]] specifies the font family, size, etc

key (Any) Used with window.FindElement and with return values to
uniquely identify this element

310/511

pad (int, int) or ((int, int),(int,int)) Amount of padding to put around
element (left/right, top/bottom) or ((left, right), (top, bottom))

tooltip (str) text, that will appear when mouse hovers over the element

change_submits (bool) DO NOT USE. Only listed for backwards compat - Use
enable_events instead

enable_events (bool) Turns on the element specific events. Radio Button events
happen when an item is selected

visible (bool) set visibility state of the element

metadata (Any) User metadata that can be set to ANYTHING

Name Meaning

ButtonReboundCallback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

ButtonReboundCallback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

Get

A snapshot of the value of Radio Button -> (bool)

Get()

Name Meaning

return (bool) True if this radio button is
selected

311/511

ResetGroup

Sets all Radio Buttons in the group to not selected

ResetGroup()

SetFocus

Sets the current focus to be on this element

SetFocus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

SetTooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

SetTooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

Update

Changes some of the settings for the Radio Button Element. Must call Window.Read or
Window.Finalize prior

Update(value=None,
 disabled=None,
 visible=None)

Parameter Descriptions:

312/511

Name Meaning

value (bool) if True change to selected and set others in group to
unselected

disabled (bool) disable or enable state of the element

visible (bool) control visibility of element

button_rebound_callback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

button_rebound_callback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

expand

Causes the Element to expand to fill available space in the X and Y directions. Can specify
which or both directions

expand(expand_x=False, expand_y=False)

Parameter Descriptions:

Name Meaning

expand_x (Bool) If True Element will expand in the Horizontal
directions

expand_y (Bool) If True Element will expand in the Vertical directions

get

A snapshot of the value of Radio Button -> (bool)

313/511

get()

Name Meaning

return (bool) True if this radio button is
selected

get_size

Return the size of an element in Pixels. Care must be taken as some elements use characters
to specify their size but will return pixels when calling this get_size method.

get_size()

Name Meaning

return Tuple[int, int] - Width, Height of the
element

hide_row

Hide the entire row an Element is located on. Use this if you must have all space removed
when you are hiding an element, including the row container

hide_row()

reset_group

Sets all Radio Buttons in the group to not selected

reset_group()

set_focus

Sets the current focus to be on this element

set_focus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

314/511

set_size

Changes the size of an element to a specific size. It's possible to specify None for one of sizes
so that only 1 of the element's dimensions are changed.

set_size(size=(None, None))

Parameter Descriptions:

Name Meaning

size Tuple[int, int] The size in characters, rows typically. In some cases they are
pixels

set_tooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

set_tooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

unhide_row

Unhides (makes visible again) the row container that the Element is located on. Note that it will
re-appear at the bottom of the window / container, most likely.

unhide_row()

update

Changes some of the settings for the Radio Button Element. Must call Window.Read or
Window.Finalize prior

update(value=None,
 disabled=None,
 visible=None)

Parameter Descriptions:

315/511

Name Meaning

value (bool) if True change to selected and set others in group to
unselected

disabled (bool) disable or enable state of the element

visible (bool) control visibility of element

Slider Element

A slider, horizontal or vertical

Slider(range=(None, None),
 default_value=None,
 resolution=None,
 tick_interval=None,
 orientation=None,
 disable_number_display=False,
 border_width=None,
 relief=None,
 change_submits=False,
 enable_events=False,
 disabled=False,
 size=(None, None),
 font=None,
 background_color=None,
 text_color=None,
 key=None,
 pad=None,
 tooltip=None,
 visible=True,
 metadata=None)

Parameter Descriptions:

Name Meaning

range Union[Tuple[int, int], Tuple[float, float]] slider's range (min
value, max value)

default_value Union[int, float] starting value for the slider

resolution Union[int, float] the smallest amount the slider can be
moved

316/511

tick_interval Union[int, float] how often a visible tick should be shown
next to slider

orientation (str) 'horizontal' or 'vertical' ('h' or 'v' also work)

disable_number_display (bool) if True no number will be displayed by the Slider
Element

border_width (int) width of border around element in pixels

relief (enum) relief style. RELIEF_RAISED RELIEF_SUNKEN
RELIEF_FLAT RELIEF_RIDGE RELIEF_GROOVE RELIEF_SOLID

change_submits (bool) * DEPRICATED DO NOT USE! Same as enable_events

enable_events (bool) If True then moving the slider will generate an Event

disabled (bool) set disable state for element

size Tuple[int, int] (width in characters, height in rows)

font Union[str, Tuple[str, int]] specifies the font family, size, etc

background_color (str) color of slider's background

text_color (str) color of the slider's text

key (any) Value that uniquely identifies this element from all
other elements. Used when Finding an element or in return
values. Must be unique to the window

pad (int, int) or ((int, int),(int,int)) Amount of padding to put
around element (left/right, top/bottom) or ((left, right), (top,
bottom))

tooltip (str) text, that will appear when mouse hovers over the
element

visible (bool) set visibility state of the element

metadata (Any) User metadata that can be set to ANYTHING

Name Meaning

ButtonReboundCallback
317/511

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

ButtonReboundCallback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

SetFocus

Sets the current focus to be on this element

SetFocus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

SetTooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

SetTooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

Update

318/511

Changes some of the settings for the Slider Element. Must call Window.Read or
Window.Finalize prior

Update(value=None,
 range=(None, None),
 disabled=None,
 visible=None)

Parameter Descriptions:

Name Meaning

value Union[int, float] sets current slider value

range Union[Tuple[int, int], Tuple[float, float] Sets a new range for slider

disabled (bool) disable or enable state of the element

visible (bool) control visibility of element

button_rebound_callback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

button_rebound_callback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

expand

Causes the Element to expand to fill available space in the X and Y directions. Can specify
which or both directions

expand(expand_x=False, expand_y=False)

Parameter Descriptions:

319/511

Name Meaning

expand_x (Bool) If True Element will expand in the Horizontal
directions

expand_y (Bool) If True Element will expand in the Vertical directions

get_size

Return the size of an element in Pixels. Care must be taken as some elements use characters
to specify their size but will return pixels when calling this get_size method.

get_size()

Name Meaning

return Tuple[int, int] - Width, Height of the
element

hide_row

Hide the entire row an Element is located on. Use this if you must have all space removed
when you are hiding an element, including the row container

hide_row()

set_focus

Sets the current focus to be on this element

set_focus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

set_size

Changes the size of an element to a specific size. It's possible to specify None for one of sizes
so that only 1 of the element's dimensions are changed.

320/511

set_size(size=(None, None))

Parameter Descriptions:

Name Meaning

size Tuple[int, int] The size in characters, rows typically. In some cases they are
pixels

set_tooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

set_tooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

unhide_row

Unhides (makes visible again) the row container that the Element is located on. Note that it will
re-appear at the bottom of the window / container, most likely.

unhide_row()

update

Changes some of the settings for the Slider Element. Must call Window.Read or
Window.Finalize prior

update(value=None,
 range=(None, None),
 disabled=None,
 visible=None)

Parameter Descriptions:

Name Meaning

value Union[int, float] sets current slider value

321/511

range Union[Tuple[int, int], Tuple[float, float] Sets a new range for slider

disabled (bool) disable or enable state of the element

visible (bool) control visibility of element

Name Meaning

Spin Element

A spinner with up/down buttons and a single line of text. Choose 1 values from list

Spin(values,
 initial_value=None,
 disabled=False,
 change_submits=False,
 enable_events=False,
 size=(None, None),
 auto_size_text=None,
 font=None,
 background_color=None,
 text_color=None,
 key=None,
 pad=None,
 tooltip=None,
 visible=True,
 metadata=None)

Parameter Descriptions:

Name Meaning

values List[Any] List of valid values

initial_value (Any) Initial item to show in window. Choose from list of values
supplied

disabled (bool) set disable state

change_submits (bool) DO NOT USE. Only listed for backwards compat - Use
enable_events instead

enable_events (bool) Turns on the element specific events. Spin events happen
when an item changes

322/511

size Tuple[int, int] (width, height) width = characters-wide, height =
rows-high

auto_size_text (bool) if True will size the element to match the length of the text

font Union[str, Tuple[str, int]] specifies the font family, size, etc

background_color (str) color of background

text_color (str) color of the text

key (Any) Used with window.FindElement and with return values to
uniquely identify this element

pad (int, int) or ((int, int),(int,int)) Amount of padding to put around
element (left/right, top/bottom) or ((left, right), (top, bottom))

tooltip (str) text, that will appear when mouse hovers over the element

visible (bool) set visibility state of the element

metadata (Any) User metadata that can be set to ANYTHING

Name Meaning

ButtonReboundCallback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

ButtonReboundCallback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

Get

323/511

Return the current chosen value showing in spinbox. This value will be the same as what was
provided as list of choices. If list items are ints, then the item returned will be an int (not a
string)

Get()

Name Meaning

return (Any) The currently visible entry

SetFocus

Sets the current focus to be on this element

SetFocus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

SetTooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

SetTooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

Update

Changes some of the settings for the Spin Element. Must call Window.Read or
Window.Finalize prior

324/511

Update(value=None,
 values=None,
 disabled=None,
 visible=None)

Parameter Descriptions:

Name Meaning

value (Any) set the current value from list of
choices

values List[Any] set available choices

disabled (bool) disable or enable state of the element

visible (bool) control visibility of element

button_rebound_callback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

button_rebound_callback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

expand

Causes the Element to expand to fill available space in the X and Y directions. Can specify
which or both directions

expand(expand_x=False, expand_y=False)

Parameter Descriptions:

325/511

Name Meaning

expand_x (Bool) If True Element will expand in the Horizontal
directions

expand_y (Bool) If True Element will expand in the Vertical directions

get

Return the current chosen value showing in spinbox. This value will be the same as what was
provided as list of choices. If list items are ints, then the item returned will be an int (not a
string)

get()

Name Meaning

return (Any) The currently visible entry

get_size

Return the size of an element in Pixels. Care must be taken as some elements use characters
to specify their size but will return pixels when calling this get_size method.

get_size()

Name Meaning

return Tuple[int, int] - Width, Height of the
element

hide_row

Hide the entire row an Element is located on. Use this if you must have all space removed
when you are hiding an element, including the row container

hide_row()

set_focus

Sets the current focus to be on this element

set_focus(force=False)

326/511

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

set_size

Changes the size of an element to a specific size. It's possible to specify None for one of sizes
so that only 1 of the element's dimensions are changed.

set_size(size=(None, None))

Parameter Descriptions:

Name Meaning

size Tuple[int, int] The size in characters, rows typically. In some cases they are
pixels

set_tooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

set_tooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

unhide_row

Unhides (makes visible again) the row container that the Element is located on. Note that it will
re-appear at the bottom of the window / container, most likely.

unhide_row()

update

327/511

Changes some of the settings for the Spin Element. Must call Window.Read or
Window.Finalize prior

update(value=None,
 values=None,
 disabled=None,
 visible=None)

Parameter Descriptions:

Name Meaning

value (Any) set the current value from list of
choices

values List[Any] set available choices

disabled (bool) disable or enable state of the element

visible (bool) control visibility of element

StatusBar Element

A StatusBar Element creates the sunken text-filled strip at the bottom. Many Windows programs have this
line

StatusBar(text,
 size=(None, None),
 auto_size_text=None,
 click_submits=None,
 enable_events=False,
 relief="sunken",
 font=None,
 text_color=None,
 background_color=None,
 justification=None,
 pad=None,
 key=None,
 tooltip=None,
 visible=True,
 metadata=None)

Parameter Descriptions:

Name Meaning

text (str) Text that is to be displayed in the widget

328/511

size Tuple[(int), (int)] (w,h) w=characters-wide, h=rows-high

auto_size_text (bool) True if size should fit the text length

click_submits (bool) DO NOT USE. Only listed for backwards compat - Use
enable_events instead

enable_events (bool) Turns on the element specific events. StatusBar events
occur when the bar is clicked

relief (enum) relief style. Values are same as progress meter relief
values. Can be a constant or a string: RELIEF_RAISED
RELIEF_SUNKEN RELIEF_FLAT RELIEF_RIDGE RELIEF_GROOVE
RELIEF_SOLID

font Union[str, Tuple[str, int]] specifies the font family, size, etc

text_color (str) color of the text

background_color (str) color of background

justification (str) how string should be aligned within space provided by size.
Valid choices = left , right , center

pad (int, int) or ((int, int),(int,int)) Amount of padding to put around
element (left/right, top/bottom) or ((left, right), (top, bottom))

key (Any) Used with window.FindElement and with return values to
uniquely identify this element to uniquely identify this element

tooltip (str) text, that will appear when mouse hovers over the element

visible (bool) set visibility state of the element

metadata (Any) User metadata that can be set to ANYTHING

Name Meaning

ButtonReboundCallback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

ButtonReboundCallback(event)
329/511

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

SetFocus

Sets the current focus to be on this element

SetFocus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

SetTooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

SetTooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

Update

Changes some of the settings for the Status Bar Element. Must call Window.Read or
Window.Finalize prior

Update(value=None,
 background_color=None,
 text_color=None,
 font=None,
 visible=None)

330/511

Parameter Descriptions:

Name Meaning

value (str) new text to show

background_color (str) color of background

text_color (str) color of the text

font Union[str, Tuple[str, int]] specifies the font family, size,
etc

visible (bool) set visibility state of the element

button_rebound_callback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

button_rebound_callback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

expand

Causes the Element to expand to fill available space in the X and Y directions. Can specify
which or both directions

expand(expand_x=False, expand_y=False)

Parameter Descriptions:

Name Meaning

expand_x (Bool) If True Element will expand in the Horizontal
directions

331/511

expand_y (Bool) If True Element will expand in the Vertical directions

Name Meaning

get_size

Return the size of an element in Pixels. Care must be taken as some elements use characters
to specify their size but will return pixels when calling this get_size method.

get_size()

Name Meaning

return Tuple[int, int] - Width, Height of the
element

hide_row

Hide the entire row an Element is located on. Use this if you must have all space removed
when you are hiding an element, including the row container

hide_row()

set_focus

Sets the current focus to be on this element

set_focus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

set_size

Changes the size of an element to a specific size. It's possible to specify None for one of sizes
so that only 1 of the element's dimensions are changed.

set_size(size=(None, None))

Parameter Descriptions:

332/511

Name Meaning

size Tuple[int, int] The size in characters, rows typically. In some cases they are
pixels

set_tooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

set_tooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

unhide_row

Unhides (makes visible again) the row container that the Element is located on. Note that it will
re-appear at the bottom of the window / container, most likely.

unhide_row()

update

Changes some of the settings for the Status Bar Element. Must call Window.Read or
Window.Finalize prior

update(value=None,
 background_color=None,
 text_color=None,
 font=None,
 visible=None)

Parameter Descriptions:

Name Meaning

value (str) new text to show

background_color (str) color of background

333/511

text_color (str) color of the text

font Union[str, Tuple[str, int]] specifies the font family, size,
etc

visible (bool) set visibility state of the element

Name Meaning

Tab Element

Tab Element is another "Container" element that holds a layout and displays a tab with text. Used with
TabGroup only
Tabs are never placed directly into a layout. They are always "Contained" in a TabGroup layout

Tab(title,
 layout,
 title_color=None,
 background_color=None,
 font=None,
 pad=None,
 disabled=False,
 border_width=None,
 key=None,
 tooltip=None,
 right_click_menu=None,
 visible=True,
 element_justification="left",
 metadata=None)

Parameter Descriptions:

Name Meaning

title (str) text to show on the tab

layout List[List[Element]] The element layout that will be shown in the
tab

title_color (str) color of the tab text (note not currently working on tkinter)

background_color (str) color of background of the entire layout

font Union[str, Tuple[str, int]] specifies the font family, size, etc

334/511

pad (int, int) or ((int, int),(int,int)) Amount of padding to put around
element (left/right, top/bottom) or ((left, right), (top, bottom))

disabled (bool) If True button will be created disabled

border_width (int) width of border around element in pixels

key (any) Value that uniquely identifies this element from all other
elements. Used when Finding an element or in return values.
Must be unique to the window

tooltip (str) text, that will appear when mouse hovers over the element

right_click_menu List[List[Union[List[str],str]]] A list of lists of Menu items to show
when this element is right clicked. See user docs for exact
format.

visible (bool) set visibility state of the element

element_justification (str) All elements inside the Tab will have this justification 'left',
'right', 'center' are valid values

metadata (Any) User metadata that can be set to ANYTHING

Name Meaning

AddRow

Not recommended use call. Used to add rows of Elements to the Frame Element.

AddRow(args)

Parameter Descriptions:

Name Meaning

*args List[Element] The list of elements for this
row

ButtonReboundCallback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback

335/511

function that is normally called.

ButtonReboundCallback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

Layout

Not user callable. Use layout parameter instead. Creates the layout using the supplied rows of
Elements

Layout(rows)

Parameter Descriptions:

Name Meaning

rows List[List[Element]] The list of
rows

return (Tab) used for chaining

Select

Create a tkinter event that mimics user clicking on a tab. Must have called window.Finalize /
Read first!

Select()

SetFocus

Sets the current focus to be on this element

SetFocus(force=False)

Parameter Descriptions:

336/511

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

SetTooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

SetTooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

Update

Changes some of the settings for the Tab Element. Must call Window.Read or
Window.Finalize prior

Update(disabled=None, visible=None)

Parameter Descriptions:

Name Meaning

disabled (bool) disable or enable state of the
element

visible (bool) control visibility of element

add_row

Not recommended use call. Used to add rows of Elements to the Frame Element.

add_row(args)

Parameter Descriptions:

337/511

Name Meaning

*args List[Element] The list of elements for this
row

button_rebound_callback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

button_rebound_callback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

expand

Causes the Element to expand to fill available space in the X and Y directions. Can specify
which or both directions

expand(expand_x=False, expand_y=False)

Parameter Descriptions:

Name Meaning

expand_x (Bool) If True Element will expand in the Horizontal
directions

expand_y (Bool) If True Element will expand in the Vertical directions

get_size

Return the size of an element in Pixels. Care must be taken as some elements use characters
to specify their size but will return pixels when calling this get_size method.

get_size()

338/511

Name Meaning

return Tuple[int, int] - Width, Height of the
element

hide_row

Hide the entire row an Element is located on. Use this if you must have all space removed
when you are hiding an element, including the row container

hide_row()

layout

Not user callable. Use layout parameter instead. Creates the layout using the supplied rows of
Elements

layout(rows)

Parameter Descriptions:

Name Meaning

rows List[List[Element]] The list of
rows

return (Tab) used for chaining

select

Create a tkinter event that mimics user clicking on a tab. Must have called window.Finalize /
Read first!

select()

set_focus

Sets the current focus to be on this element

set_focus(force=False)

Parameter Descriptions:

339/511

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

set_size

Changes the size of an element to a specific size. It's possible to specify None for one of sizes
so that only 1 of the element's dimensions are changed.

set_size(size=(None, None))

Parameter Descriptions:

Name Meaning

size Tuple[int, int] The size in characters, rows typically. In some cases they are
pixels

set_tooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

set_tooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

unhide_row

Unhides (makes visible again) the row container that the Element is located on. Note that it will
re-appear at the bottom of the window / container, most likely.

unhide_row()

update

Changes some of the settings for the Tab Element. Must call Window.Read or
Window.Finalize prior

340/511

update(disabled=None, visible=None)

Parameter Descriptions:

Name Meaning

disabled (bool) disable or enable state of the
element

visible (bool) control visibility of element

TabGroup Element

TabGroup Element groups together your tabs into the group of tabs you see displayed in your window

TabGroup(layout,
 tab_location=None,
 title_color=None,
 selected_title_color=None,
 background_color=None,
 font=None,
 change_submits=False,
 enable_events=False,
 pad=None,
 border_width=None,
 theme=None,
 key=None,
 tooltip=None,
 visible=True,
 metadata=None)

Parameter Descriptions:

Name Meaning

layout List[List[Tab]] Layout of Tabs. Different than normal layouts. ALL
Tabs should be on first row

tab_location (str) location that tabs will be displayed. Choices are left, right,
top, bottom, lefttop, leftbottom, righttop, rightbottom,
bottomleft, bottomright, topleft, topright

title_color (str) color of text on tabs

selected_title_color (str) color of tab when it is selected

341/511

background_color (str) color of background of tabs

font Union[str, Tuple[str, int]] specifies the font family, size, etc

change_submits (bool) * DEPRICATED DO NOT USE! Same as enable_events

enable_events (bool) If True then switching tabs will generate an Event

pad (int, int) or ((int, int),(int,int)) Amount of padding to put around
element (left/right, top/bottom) or ((left, right), (top, bottom))

border_width (int) width of border around element in pixels

theme (enum) tabs can be 'themed'. These are the choices (some may
not work on your OS): THEME_DEFAULT THEME_WINNATIVE
THEME_CLAM THEME_ALT THEME_CLASSIC THEME_VISTA
THEME_XPNATIVE

key (any) Value that uniquely identifies this element from all other
elements. Used when Finding an element or in return values.
Must be unique to the window

tooltip (str) text, that will appear when mouse hovers over the element

visible (bool) set visibility state of the element

metadata (Any) User metadata that can be set to ANYTHING

Name Meaning

AddRow

Not recommended user call. Used to add rows of Elements to the Frame Element.

AddRow(args)

Parameter Descriptions:

Name Meaning

*args List[Element] The list of elements for this
row

ButtonReboundCallback

342/511

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

ButtonReboundCallback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

FindKeyFromTabName

Searches through the layout to find the key that matches the text on the tab. Implies names
should be unique

FindKeyFromTabName(tab_name)

Parameter Descriptions:

Name Meaning

tab_name

return Union[key, None] Returns the key or None if no key
found

Get

Returns the current value for the Tab Group, which will be the currently selected tab's KEY or
the text on the tab if no key is defined. Returns None if an error occurs. Note that this is
exactly the same data that would be returned from a call to Window.Read. Are you sure you
are using this method correctly?

Get()

Name Meaning

return Union[Any, None] The key of the currently selected tab or the tab's text if it
has no key

343/511

Layout

Can use like the Window.Layout method, but it's better to use the layout parameter when
creating

Layout(rows)

Parameter Descriptions:

Name Meaning

rows List[List[Element]] The rows of Elements

return (Frame) Used for chaining

SetFocus

Sets the current focus to be on this element

SetFocus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

SetTooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

SetTooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

add_row

344/511

Not recommended user call. Used to add rows of Elements to the Frame Element.

add_row(args)

Parameter Descriptions:

Name Meaning

*args List[Element] The list of elements for this
row

button_rebound_callback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

button_rebound_callback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

expand

Causes the Element to expand to fill available space in the X and Y directions. Can specify
which or both directions

expand(expand_x=False, expand_y=False)

Parameter Descriptions:

Name Meaning

expand_x (Bool) If True Element will expand in the Horizontal
directions

expand_y (Bool) If True Element will expand in the Vertical directions

find_key_from_tab_name
345/511

Searches through the layout to find the key that matches the text on the tab. Implies names
should be unique

find_key_from_tab_name(tab_name)

Parameter Descriptions:

Name Meaning

tab_name

return Union[key, None] Returns the key or None if no key
found

get

Returns the current value for the Tab Group, which will be the currently selected tab's KEY or
the text on the tab if no key is defined. Returns None if an error occurs. Note that this is
exactly the same data that would be returned from a call to Window.Read. Are you sure you
are using this method correctly?

get()

Name Meaning

return Union[Any, None] The key of the currently selected tab or the tab's text if it
has no key

get_size

Return the size of an element in Pixels. Care must be taken as some elements use characters
to specify their size but will return pixels when calling this get_size method.

get_size()

Name Meaning

return Tuple[int, int] - Width, Height of the
element

hide_row

346/511

Hide the entire row an Element is located on. Use this if you must have all space removed
when you are hiding an element, including the row container

hide_row()

layout

Can use like the Window.Layout method, but it's better to use the layout parameter when
creating

layout(rows)

Parameter Descriptions:

Name Meaning

rows List[List[Element]] The rows of Elements

return (Frame) Used for chaining

set_focus

Sets the current focus to be on this element

set_focus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

set_size

Changes the size of an element to a specific size. It's possible to specify None for one of sizes
so that only 1 of the element's dimensions are changed.

set_size(size=(None, None))

Parameter Descriptions:

347/511

Name Meaning

size Tuple[int, int] The size in characters, rows typically. In some cases they are
pixels

set_tooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

set_tooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

unhide_row

Unhides (makes visible again) the row container that the Element is located on. Note that it will
re-appear at the bottom of the window / container, most likely.

unhide_row()

Table Element

348/511

Table(values,
 headings=None,
 visible_column_map=None,
 col_widths=None,
 def_col_width=10,
 auto_size_columns=True,
 max_col_width=20,
 select_mode=None,
 display_row_numbers=False,
 num_rows=None,
 row_height=None,
 font=None,
 justification="right",
 text_color=None,
 background_color=None,
 alternating_row_color=None,
 row_colors=None,
 vertical_scroll_only=True,
 hide_vertical_scroll=False,
 size=(None, None),
 change_submits=False,
 enable_events=False,
 bind_return_key=False,
 pad=None,
 key=None,
 tooltip=None,
 right_click_menu=None,
 visible=True,
 metadata=None)

Parameter Descriptions:

Name Meaning

values List[List[Union[str, int, float]]]

headings List[str] The headings to show on the top line

visible_column_map List[bool] One entry for each column. False indicates the
column is not shown

col_widths List[int] Number of characters that each column will occupy

def_col_width (int) Default column width in characters

auto_size_columns (bool) if True columns will be sized automatically

max_col_width (int) Maximum width for all columns in characters

349/511

select_mode (enum) Select Mode. Valid values start with
"TABLE_SELECT_MODE_". Valid values are:
TABLE_SELECT_MODE_NONE TABLE_SELECT_MODE_BROWSE
TABLE_SELECT_MODE_EXTENDED

display_row_numbers (bool) if True, the first column of the table will be the row #

num_rows (int) The number of rows of the table to display at a time

row_height (int) height of a single row in pixels

font Union[str, Tuple[str, int]] specifies the font family, size, etc

justification (str) 'left', 'right', 'center' are valid choices

text_color (str) color of the text

background_color (str) color of background

alternating_row_color (str) if set then every other row will have this color in the
background.

row_colors

vertical_scroll_only (bool) if True only the vertical scrollbar will be visible

hide_vertical_scroll (bool) if True vertical scrollbar will be hidden

size Tuple[int, int] DO NOT USE! Use num_rows instead

change_submits (bool) DO NOT USE. Only listed for backwards compat - Use
enable_events instead

enable_events (bool) Turns on the element specific events. Table events
happen when row is clicked

bind_return_key (bool) if True, pressing return key will cause event coming
from Table, ALSO a left button double click will generate an
event if this parameter is True

pad (int, int) or ((int, int),(int,int)) Amount of padding to put around
element (left/right, top/bottom) or ((left, right), (top, bottom))

Name Meaning

350/511

key (Any) Used with window.FindElement and with return values
to uniquely identify this element to uniquely identify this
element

tooltip (str) text, that will appear when mouse hovers over the
element

right_click_menu List[List[Union[List[str],str]]] A list of lists of Menu items to
show when this element is right clicked. See user docs for
exact format.

visible (bool) set visibility state of the element

metadata (Any) User metadata that can be set to ANYTHING

Name Meaning

ButtonReboundCallback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

ButtonReboundCallback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

Get

Dummy function for tkinter port. In the Qt port you can read back the values in the table in
case they were edited. Don't know yet how to enable editing of a Tree in tkinter so just
returning the values provided by user when Table was created or Updated.

Get()

Name Meaning

351/511

return List[List[Any]] the current table values (for now what was originally provided
up updated)

Name Meaning

SetFocus

Sets the current focus to be on this element

SetFocus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

SetTooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

SetTooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

Update

Changes some of the settings for the Table Element. Must call Window.Read or
Window.Finalize prior

Update(values=None,
 num_rows=None,
 visible=None,
 select_rows=None,
 alternating_row_color=None,
 row_colors=None)

Parameter Descriptions:
352/511

Name Meaning

values List[List[Union[str, int, float]]] A new 2-dimensional table to
show

num_rows (int) How many rows to display at a time

visible (bool) if True then will be visible

select_rows List[int] List of rows to select as if user did

alternating_row_color (str) the color to make every other row

row_colors List[Union[Tuple[int, str], Tuple[Int, str, str]] list of tuples of
(row, background color) OR (row, foreground color,
background color). Changes the colors of listed rows to the
color(s) provided (note the optional foreground color)

button_rebound_callback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

button_rebound_callback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

expand

Causes the Element to expand to fill available space in the X and Y directions. Can specify
which or both directions

expand(expand_x=False, expand_y=False)

Parameter Descriptions:

353/511

Name Meaning

expand_x (Bool) If True Element will expand in the Horizontal
directions

expand_y (Bool) If True Element will expand in the Vertical directions

get

Dummy function for tkinter port. In the Qt port you can read back the values in the table in
case they were edited. Don't know yet how to enable editing of a Tree in tkinter so just
returning the values provided by user when Table was created or Updated.

get()

Name Meaning

return List[List[Any]] the current table values (for now what was originally provided
up updated)

get_size

Return the size of an element in Pixels. Care must be taken as some elements use characters
to specify their size but will return pixels when calling this get_size method.

get_size()

Name Meaning

return Tuple[int, int] - Width, Height of the
element

hide_row

Hide the entire row an Element is located on. Use this if you must have all space removed
when you are hiding an element, including the row container

hide_row()

set_focus

Sets the current focus to be on this element

set_focus(force=False)

354/511

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

set_size

Changes the size of an element to a specific size. It's possible to specify None for one of sizes
so that only 1 of the element's dimensions are changed.

set_size(size=(None, None))

Parameter Descriptions:

Name Meaning

size Tuple[int, int] The size in characters, rows typically. In some cases they are
pixels

set_tooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

set_tooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

treeview_double_click

Not user callable. Callback function that is called when something is selected from Table.
Stores the selected rows in Element as they are being selected. If events enabled, then returns
from Read

treeview_double_click(event)

Parameter Descriptions:

355/511

Name Meaning

event (unknown) event information from
tkinter

treeview_selected

Not user callable. Callback function that is called when something is selected from Table.
Stores the selected rows in Element as they are being selected. If events enabled, then returns
from Read

treeview_selected(event)

Parameter Descriptions:

Name Meaning

event (unknown) event information from
tkinter

unhide_row

Unhides (makes visible again) the row container that the Element is located on. Note that it will
re-appear at the bottom of the window / container, most likely.

unhide_row()

update

Changes some of the settings for the Table Element. Must call Window.Read or
Window.Finalize prior

update(values=None,
 num_rows=None,
 visible=None,
 select_rows=None,
 alternating_row_color=None,
 row_colors=None)

Parameter Descriptions:

Name Meaning

values List[List[Union[str, int, float]]] A new 2-dimensional table to
show

356/511

num_rows (int) How many rows to display at a time

visible (bool) if True then will be visible

select_rows List[int] List of rows to select as if user did

alternating_row_color (str) the color to make every other row

row_colors List[Union[Tuple[int, str], Tuple[Int, str, str]] list of tuples of
(row, background color) OR (row, foreground color,
background color). Changes the colors of listed rows to the
color(s) provided (note the optional foreground color)

Name Meaning

Text Element

Text - Display some text in the window. Usually this means a single line of text. However, the text can also
be multiple lines. If multi-lined there are no scroll bars.

Text(text="",
 size=(None, None),
 auto_size_text=None,
 click_submits=False,
 enable_events=False,
 relief=None,
 font=None,
 text_color=None,
 background_color=None,
 border_width=None,
 justification=None,
 pad=None,
 key=None,
 right_click_menu=None,
 tooltip=None,
 visible=True,
 metadata=None)

Parameter Descriptions:

Name Meaning

text (str) The text to display. Can include /n to achieve multiple lines

size Tuple[int, int] (width, height) width = characters-wide, height =
rows-high

357/511

auto_size_text (bool) if True size of the Text Element will be sized to fit the string
provided in 'text' parm

click_submits (bool) DO NOT USE. Only listed for backwards compat - Use
enable_events instead

enable_events (bool) Turns on the element specific events. Text events happen
when the text is clicked

relief (str/enum) relief style around the text. Values are same as
progress meter relief values. Should be a constant that is defined
at starting with "RELIEF_" - RELIEF_RAISED, RELIEF_SUNKEN,
RELIEF_FLAT, RELIEF_RIDGE, RELIEF_GROOVE, RELIEF_SOLID

font Union[str, Tuple[str, int]] specifies the font family, size, etc

text_color (str) color of the text

background_color (str) color of background

border_width (int) number of pixels for the border (if using a relief)

justification (str) how string should be aligned within space provided by size.
Valid choices = left , right , center

pad (int, int) or ((int, int),(int,int)) Amount of padding to put around
element (left/right, top/bottom) or ((left, right), (top, bottom))

key (Any) Used with window.FindElement and with return values to
uniquely identify this element to uniquely identify this element

right_click_menu List[List[Union[List[str],str]]] A list of lists of Menu items to show
when this element is right clicked. See user docs for exact format.

tooltip (str) text, that will appear when mouse hovers over the element

visible (bool) set visibility state of the element

metadata (Any) User metadata that can be set to ANYTHING

Name Meaning

ButtonReboundCallback

358/511

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

ButtonReboundCallback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

SetFocus

Sets the current focus to be on this element

SetFocus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

SetTooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

SetTooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

Update

359/511

Changes some of the settings for the Text Element. Must call Window.Read or
Window.Finalize prior

Update(value=None,
 background_color=None,
 text_color=None,
 font=None,
 visible=None)

Parameter Descriptions:

Name Meaning

value (str) new text to show

background_color (str) color of background

text_color (str) color of the text

font Union[str, Tuple[str, int]] specifies the font family, size,
etc

visible (bool) set visibility state of the element

button_rebound_callback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

button_rebound_callback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

expand

Causes the Element to expand to fill available space in the X and Y directions. Can specify
which or both directions

expand(expand_x=False, expand_y=False)
360/511

Parameter Descriptions:

Name Meaning

expand_x (Bool) If True Element will expand in the Horizontal
directions

expand_y (Bool) If True Element will expand in the Vertical directions

get_size

Return the size of an element in Pixels. Care must be taken as some elements use characters
to specify their size but will return pixels when calling this get_size method.

get_size()

Name Meaning

return Tuple[int, int] - Width, Height of the
element

hide_row

Hide the entire row an Element is located on. Use this if you must have all space removed
when you are hiding an element, including the row container

hide_row()

set_focus

Sets the current focus to be on this element

set_focus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

set_size

361/511

Changes the size of an element to a specific size. It's possible to specify None for one of sizes
so that only 1 of the element's dimensions are changed.

set_size(size=(None, None))

Parameter Descriptions:

Name Meaning

size Tuple[int, int] The size in characters, rows typically. In some cases they are
pixels

set_tooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

set_tooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

unhide_row

Unhides (makes visible again) the row container that the Element is located on. Note that it will
re-appear at the bottom of the window / container, most likely.

unhide_row()

update

Changes some of the settings for the Text Element. Must call Window.Read or
Window.Finalize prior

update(value=None,
 background_color=None,
 text_color=None,
 font=None,
 visible=None)

Parameter Descriptions:

362/511

Name Meaning

value (str) new text to show

background_color (str) color of background

text_color (str) color of the text

font Union[str, Tuple[str, int]] specifies the font family, size,
etc

visible (bool) set visibility state of the element

Tree Element

Tree Element - Presents data in a tree-like manner, much like a file/folder browser. Uses the TreeData class
to hold the user

Tree(data=None,
 headings=None,
 visible_column_map=None,
 col_widths=None,
 col0_width=10,
 def_col_width=10,
 auto_size_columns=True,
 max_col_width=20,
 select_mode=None,
 show_expanded=False,
 change_submits=False,
 enable_events=False,
 font=None,
 justification="right",
 text_color=None,
 background_color=None,
 num_rows=None,
 row_height=None,
 pad=None,
 key=None,
 tooltip=None,
 right_click_menu=None,
 visible=True,
 metadata=None)

Parameter Descriptions:

363/511

Name Meaning

data (TreeData) The data represented using a PySimpleGUI provided
TreeData class

headings List[str] List of individual headings for each column

visible_column_map List[bool] Determines if a column should be visible. If left empty,
all columns will be shown

col_widths List[int] List of column widths so that individual column widths
can be controlled

col0_width (int) Size of Column 0 which is where the row numbers will be
optionally shown

def_col_width (int) default column width

auto_size_columns (bool) if True, the size of a column is determined using the
contents of the column

max_col_width (int) the maximum size a column can be

select_mode (enum) Use same values as found on Table Element. Valid
values include: TABLE_SELECT_MODE_NONE
TABLE_SELECT_MODE_BROWSE
TABLE_SELECT_MODE_EXTENDED

show_expanded (bool) if True then the tree will be initially shown with all nodes
completely expanded

change_submits (bool) DO NOT USE. Only listed for backwards compat - Use
enable_events instead

enable_events (bool) Turns on the element specific events. Tree events happen
when row is clicked

font Union[str, Tuple[str, int]] specifies the font family, size, etc

justification (str) 'left', 'right', 'center' are valid choices

text_color (str) color of the text

background_color (str) color of background

364/511

num_rows (int) The number of rows of the table to display at a time

row_height (int) height of a single row in pixels

pad (int, int) or ((int, int),(int,int)) Amount of padding to put around
element (left/right, top/bottom) or ((left, right), (top, bottom))

key (Any) Used with window.FindElement and with return values to
uniquely identify this element to uniquely identify this element

tooltip (str) text, that will appear when mouse hovers over the element

right_click_menu List[List[Union[List[str],str]]] A list of lists of Menu items to show
when this element is right clicked. See user docs for exact
format.

visible (bool) set visibility state of the element

metadata (Any) User metadata that can be set to ANYTHING

Name Meaning

ButtonReboundCallback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

ButtonReboundCallback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

SetFocus

Sets the current focus to be on this element

SetFocus(force=False)

Parameter Descriptions:

365/511

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

SetTooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

SetTooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

Update

Changes some of the settings for the Tree Element. Must call Window.Read or
Window.Finalize prior

Update(values=None,
 key=None,
 value=None,
 text=None,
 icon=None,
 visible=None)

Parameter Descriptions:

Name Meaning

values (TreeData) Representation of the tree

key (Any) identifies a particular item in tree to update

value (Any) sets the node identified by key to a particular value

text (str) sets the node identified by ket to this string

icon Union[bytes, str] can be either a base64 icon or a filename for the
icon

366/511

visible (bool) control visibility of element

Name Meaning

add_treeview_data

Not a user function. Recursive method that inserts tree data into the tkinter treeview widget.

add_treeview_data(node)

Parameter Descriptions:

Name Meaning

node (TreeData) The node to insert. Will insert all nodes from starting point
downward, recursively

button_rebound_callback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

button_rebound_callback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

expand

Causes the Element to expand to fill available space in the X and Y directions. Can specify
which or both directions

expand(expand_x=False, expand_y=False)

Parameter Descriptions:

367/511

Name Meaning

expand_x (Bool) If True Element will expand in the Horizontal
directions

expand_y (Bool) If True Element will expand in the Vertical directions

get_size

Return the size of an element in Pixels. Care must be taken as some elements use characters
to specify their size but will return pixels when calling this get_size method.

get_size()

Name Meaning

return Tuple[int, int] - Width, Height of the
element

hide_row

Hide the entire row an Element is located on. Use this if you must have all space removed
when you are hiding an element, including the row container

hide_row()

set_focus

Sets the current focus to be on this element

set_focus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

set_size

Changes the size of an element to a specific size. It's possible to specify None for one of sizes
so that only 1 of the element's dimensions are changed.

368/511

set_size(size=(None, None))

Parameter Descriptions:

Name Meaning

size Tuple[int, int] The size in characters, rows typically. In some cases they are
pixels

set_tooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

set_tooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

treeview_selected

Not a user function. Callback function that happens when an item is selected from the tree. In
this method, it saves away the reported selections so they can be properly returned.

treeview_selected(event)

Parameter Descriptions:

Name Meaning

event (Any) An event parameter passed in by tkinter. Not
used

unhide_row

Unhides (makes visible again) the row container that the Element is located on. Note that it will
re-appear at the bottom of the window / container, most likely.

unhide_row()

369/511

update

Changes some of the settings for the Tree Element. Must call Window.Read or
Window.Finalize prior

update(values=None,
 key=None,
 value=None,
 text=None,
 icon=None,
 visible=None)

Parameter Descriptions:

Name Meaning

values (TreeData) Representation of the tree

key (Any) identifies a particular item in tree to update

value (Any) sets the node identified by key to a particular value

text (str) sets the node identified by ket to this string

icon Union[bytes, str] can be either a base64 icon or a filename for the
icon

visible (bool) control visibility of element

TreeData Element

Class that user fills in to represent their tree data. It
with possibly one or more children "Nodes". Each Node contains a key, text to display, list of values to
display
and an icon. The entire tree is built using a single method, Insert. Nothing else is required to make the tree.

Instantiate the object, initializes the Tree Data, creates a root node for you

TreeData()

Insert

Inserts a node into the tree. This is how user builds their tree, by Inserting Nodes This is the
ONLY user callable method in the TreeData class

370/511

Insert(parent,
 key,
 text,
 values,
 icon=None)

Parameter Descriptions:

Name Meaning

parent (Node) the parent Node

key (Any) Used to uniquely identify this node

text (str) The text that is displayed at this node's location

values List[Any] The list of values that are displayed at this
node

icon Union[str, bytes]

Node

Contains information about the individual node in the tree

Node(parent,
 key,
 text,
 values,
 icon=None)

insert

Inserts a node into the tree. This is how user builds their tree, by Inserting Nodes This is the
ONLY user callable method in the TreeData class

insert(parent,
 key,
 text,
 values,
 icon=None)

Parameter Descriptions:

Name Meaning

parent (Node) the parent Node

371/511

key (Any) Used to uniquely identify this node

text (str) The text that is displayed at this node's location

values List[Any] The list of values that are displayed at this
node

icon Union[str, bytes]

Name Meaning

VerticalSeparator Element

Vertical Separator Element draws a vertical line at the given location. It will span 1 "row". Usually paired with
Column Element if extra height is needed

VerticalSeparator(pad=None)

Parameter Descriptions:

Name Meaning

pad (int, int) or ((int, int),(int,int)) Amount of padding to put around element
(left/right, top/bottom) or ((left, right), (top, bottom))

ButtonReboundCallback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

ButtonReboundCallback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

SetFocus

Sets the current focus to be on this element
372/511

SetFocus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

SetTooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

SetTooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

button_rebound_callback

Used in combination with tkinter's widget.bind function. If you wish to have a double-click for
a button to call back the button's normal callback routine, then you should target your call to
tkinter's bind method to point to this function which will in turn call the button callback
function that is normally called.

button_rebound_callback(event)

Parameter Descriptions:

Name Meaning

event (unknown) Not used in this
function.

expand

Causes the Element to expand to fill available space in the X and Y directions. Can specify
which or both directions

373/511

expand(expand_x=False, expand_y=False)

Parameter Descriptions:

Name Meaning

expand_x (Bool) If True Element will expand in the Horizontal
directions

expand_y (Bool) If True Element will expand in the Vertical directions

get_size

Return the size of an element in Pixels. Care must be taken as some elements use characters
to specify their size but will return pixels when calling this get_size method.

get_size()

Name Meaning

return Tuple[int, int] - Width, Height of the
element

hide_row

Hide the entire row an Element is located on. Use this if you must have all space removed
when you are hiding an element, including the row container

hide_row()

set_focus

Sets the current focus to be on this element

set_focus(force=False)

Parameter Descriptions:

Name Meaning

force (bool) if True will call focus_force otherwise calls
focus_set

set_size
374/511

Changes the size of an element to a specific size. It's possible to specify None for one of sizes
so that only 1 of the element's dimensions are changed.

set_size(size=(None, None))

Parameter Descriptions:

Name Meaning

size Tuple[int, int] The size in characters, rows typically. In some cases they are
pixels

set_tooltip

Called by application to change the tooltip text for an Element. Normally invoked using the
Element Object such as: window.Element('key').SetToolTip('New tip').

set_tooltip(tooltip_text)

Parameter Descriptions:

Name Meaning

tooltip_text (str) the text to show in
tooltip.

unhide_row

Unhides (makes visible again) the row container that the Element is located on. Note that it will
re-appear at the bottom of the window / container, most likely.

unhide_row()

Window

Represents a single Window

375/511

Window(title,
 layout=None,
 default_element_size=(45, 1),
 default_button_element_size=(None, None),
 auto_size_text=None,
 auto_size_buttons=None,
 location=(None, None),
 size=(None, None),
 element_padding=None,
 margins=(None, None),
 button_color=None,
 font=None,
 progress_bar_color=(None, None),
 background_color=None,
 border_depth=None,
 auto_close=False,
 auto_close_duration=3,
 icon=None,
 force_toplevel=False,
 alpha_channel=1,
 return_keyboard_events=False,
 use_default_focus=True,
 text_justification=None,
 no_titlebar=False,
 grab_anywhere=False,
 keep_on_top=False,
 resizable=False,
 disable_close=False,
 disable_minimize=False,
 right_click_menu=None,
 transparent_color=None,
 debugger_enabled=True,
 finalize=False,
 element_justification="left",
 metadata=None)

Parameter Descriptions:

Name Meaning

title (str) The title that will be displayed in the Titlebar and
on the Taskbar

layout List[List[Elements]] The layout for the window. Can also
be specified in the Layout method

default_element_size Tuple[int, int] (width, height) size in characters (wide)
and rows (high) for all elements in this window

376/511

default_button_element_size Tuple[int, int] (width, height) size in characters (wide)
and rows (high) for all Button elements in this window

auto_size_text (bool) True if Elements in Window should be sized to
exactly fir the length of text

auto_size_buttons (bool) True if Buttons in this Window should be sized to
exactly fit the text on this.

location Tuple[int, int] (x,y) location, in pixels, to locate the
upper left corner of the window on the screen. Default
is to center on screen.

size Tuple[int, int] (width, height) size in pixels for this
window. Normally the window is autosized to fit
contents, not set to an absolute size by the user

element_padding Tuple[int, int] or ((int, int),(int,int)) Default amount of
padding to put around elements in window (left/right,
top/bottom) or ((left, right), (top, bottom))

margins Tuple[int, int] (left/right, top/bottom) Amount of pixels
to leave inside the window's frame around the edges
before your elements are shown.

button_color Tuple[str, str] (text color, button color) Default button
colors for all buttons in the window

font Union[str, Tuple[str, int]] specifies the font family, size,
etc

progress_bar_color Tuple[str, str] (bar color, background color) Sets the
default colors for all progress bars in the window

background_color (str) color of background

border_depth (int) Default border depth (width) for all elements in the
window

auto_close (bool) If True, the window will automatically close itself

auto_close_duration (int) Number of seconds to wait before closing the
window

Name Meaning

377/511

icon Union[str, str] Can be either a filename or Base64
value.

force_toplevel (bool) If True will cause this window to skip the normal
use of a hidden master window

alpha_channel (float) Sets the opacity of the window. 0 = invisible 1 =
completely visible. Values bewteen 0 & 1 will produce
semi-transparent windows in SOME environments (The
Raspberry Pi always has this value at 1 and cannot
change.

return_keyboard_events (bool) if True key presses on the keyboard will be
returned as Events from Read calls

use_default_focus (bool) If True will use the default focus algorithm to set
the focus to the "Correct" element

text_justification (str) Union ['left', 'right', 'center'] Default text
justification for all Text Elements in window

no_titlebar (bool) If true, no titlebar nor frame will be shown on
window. This means you cannot minimize the window
and it will not show up on the taskbar

grab_anywhere (bool) If True can use mouse to click and drag to move
the window. Almost every location of the window will
work except input fields on some systems

keep_on_top (bool) If True, window will be created on top of all other
windows on screen. It can be bumped down if another
window created with this parm

resizable (bool) If True, allows the user to resize the window.
Note the not all Elements will change size or location
when resizing.

disable_close (bool) If True, the X button in the top right corner of the
window will no work. Use with caution and always give
a way out toyour users

Name Meaning

378/511

disable_minimize (bool) if True the user won't be able to minimize
window. Good for taking over entire screen and staying
that way.

right_click_menu List[List[Union[List[str],str]]] A list of lists of Menu items
to show when this element is right clicked. See user
docs for exact format.

transparent_color (str) Any portion of the window that has this color will
be completely transparent. You can even click through
these spots to the window under this window.

debugger_enabled (bool) If True then the internal debugger will be
enabled

finalize (bool) If True then the Finalize method will be called.
Use this rather than chaining .Finalize for cleaner code

element_justification (str) All elements in the Window itself will have this
justification 'left', 'right', 'center' are valid values

metadata (Any) User metadata that can be set to ANYTHING

Name Meaning

AddRow

Adds a single row of elements to a window's self.Rows variables. Generally speaking this is
NOT how users should be building Window layouts. Users, create a single layout (a list of lists)
and pass as a parameter to Window object, or call Window.Layout(layout)

AddRow(args)

Parameter Descriptions:

Name Meaning

*args List[Elements]

AddRows

Loops through a list of lists of elements and adds each row, list, to the layout. This is NOT the
best way to go about creating a window. Sending the entire layout at one time and passing it
as a parameter to the Window call is better.

379/511

AddRows(rows)

Parameter Descriptions:

Name Meaning

rows List[List[Elements]] A list of a list of
elements

AlphaChannel

property: AlphaChannel

A property that changes the current alpha channel value (internal value)

Name Meaning

return (float) the current alpha channel setting according to self, not read directly
from tkinter

BringToFront

Brings this window to the top of all other windows (perhaps may not be brought before a
window made to "stay on top")

BringToFront()

Close

Closes window. Users can safely call even if window has been destroyed. Should always call
when done with a window so that resources are properly freed up within your thread.

Close()

CurrentLocation

Get the current location of the window's top left corner

CurrentLocation()

Name Meaning

return Tuple[(int), (int)] The x and y location in tuple form
(x,y)

380/511

Disable

Disables window from taking any input from the user

Disable()

DisableDebugger

Disable the internal debugger. By default the debugger is ENABLED

DisableDebugger()

Disappear

Causes a window to "disappear" from the screen, but remain on the taskbar. It does this by
turning the alpha channel to 0. NOTE that on some platforms alpha is not supported. The
window will remain showing on these platforms. The Raspberry Pi for example does not have
an alpha setting

Disappear()

Elem

Find element object associated with the provided key. THIS METHOD IS NO LONGER NEEDED
to be called by the user

You can perform the same operation by writing this statement: element = window[key]

You can drop the entire "FindElement" function name and use [] instead.

Typically used in combination with a call to element's Update method (or any other element
method!): window[key].Update(new_value)

Versus the "old way" window.FindElement(key).Update(new_value)

This call can be abbreviated to any of these: FindElement == Element == Find Rememeber that
this call will return None if no match is found which may cause your code to crash if not
checked for.

Elem(key, silent_on_error=False)

Parameter Descriptions:

Name Meaning

381/511

key (Any) Used with window.FindElement and with return values to
uniquely identify this element

silent_on_error (bool) If True do not display popup nor print warning of key errors

return Union[Element, Error Element, None] Return value can be:
* the Element that matches the supplied key if found
* an Error Element if silent_on_error is False
* None if silent_on_error True

Name Meaning

Element

Find element object associated with the provided key. THIS METHOD IS NO LONGER NEEDED
to be called by the user

You can perform the same operation by writing this statement: element = window[key]

You can drop the entire "FindElement" function name and use [] instead.

Typically used in combination with a call to element's Update method (or any other element
method!): window[key].Update(new_value)

Versus the "old way" window.FindElement(key).Update(new_value)

This call can be abbreviated to any of these: FindElement == Element == Find Rememeber that
this call will return None if no match is found which may cause your code to crash if not
checked for.

Element(key, silent_on_error=False)

Parameter Descriptions:

Name Meaning

key (Any) Used with window.FindElement and with return values to
uniquely identify this element

silent_on_error (bool) If True do not display popup nor print warning of key errors

382/511

return Union[Element, Error Element, None] Return value can be:
* the Element that matches the supplied key if found
* an Error Element if silent_on_error is False
* None if silent_on_error True

Name Meaning

Enable

Re-enables window to take user input after having it be Disabled previously

Enable()

EnableDebugger

Enables the internal debugger. By default, the debugger IS enabled

EnableDebugger()

Fill

Fill in elements that are input fields with data based on a 'values dictionary'

Fill(values_dict)

Parameter Descriptions:

Name Meaning

values_dict (Dict[Any:Any]) {Element key : value} pairs

return (Window) returns self so can be chained with other
methods

Finalize

Use this method to cause your layout to built into a real tkinter window. In reality this method
is like Read(timeout=0). It doesn't block and uses your layout to create tkinter widgets to
represent the elements. Lots of action!

Finalize()

383/511

Name Meaning

return (Window) Returns 'self' so that method "Chaining" can happen (read up about
it as it's very cool!)

Find

Find element object associated with the provided key. THIS METHOD IS NO LONGER NEEDED
to be called by the user

You can perform the same operation by writing this statement: element = window[key]

You can drop the entire "FindElement" function name and use [] instead.

Typically used in combination with a call to element's Update method (or any other element
method!): window[key].Update(new_value)

Versus the "old way" window.FindElement(key).Update(new_value)

This call can be abbreviated to any of these: FindElement == Element == Find Rememeber that
this call will return None if no match is found which may cause your code to crash if not
checked for.

Find(key, silent_on_error=False)

Parameter Descriptions:

Name Meaning

key (Any) Used with window.FindElement and with return values to
uniquely identify this element

silent_on_error (bool) If True do not display popup nor print warning of key errors

return Union[Element, Error Element, None] Return value can be:
* the Element that matches the supplied key if found
* an Error Element if silent_on_error is False
* None if silent_on_error True

FindElement

Find element object associated with the provided key. THIS METHOD IS NO LONGER NEEDED
to be called by the user

384/511

You can perform the same operation by writing this statement: element = window[key]

You can drop the entire "FindElement" function name and use [] instead.

Typically used in combination with a call to element's Update method (or any other element
method!): window[key].Update(new_value)

Versus the "old way" window.FindElement(key).Update(new_value)

This call can be abbreviated to any of these: FindElement == Element == Find Rememeber that
this call will return None if no match is found which may cause your code to crash if not
checked for.

FindElement(key, silent_on_error=False)

Parameter Descriptions:

Name Meaning

key (Any) Used with window.FindElement and with return values to
uniquely identify this element

silent_on_error (bool) If True do not display popup nor print warning of key errors

return Union[Element, Error Element, None] Return value can be:
* the Element that matches the supplied key if found
* an Error Element if silent_on_error is False
* None if silent_on_error True

FindElementWithFocus

Returns the Element that currently has focus as reported by tkinter. If no element is found
None is returned!

FindElementWithFocus()

Name Meaning

return Union[Element, None] An Element if one has been found with focus or None
if no element found

GetScreenDimensions

385/511

Get the screen dimensions. NOTE - you must have a window already open for this to work
(blame tkinter not me)

GetScreenDimensions()

Name Meaning

return Union[Tuple[None, None], Tuple[width, height]] Tuple containing width and
height of screen in pixels

GrabAnyWhereOff

Turns off Grab Anywhere functionality AFTER a window has been created. Don't try on a
window that's not yet been Finalized or Read.

GrabAnyWhereOff()

GrabAnyWhereOn

Turns on Grab Anywhere functionality AFTER a window has been created. Don't try on a
window that's not yet been Finalized or Read.

GrabAnyWhereOn()

Hide

Hides the window from the screen and the task bar

Hide()

Layout

Second of two preferred ways of telling a Window what its layout is. The other way is to pass
the layout as a parameter to Window object. The parameter method is the currently preferred
method. This call to Layout has been removed from examples contained in documents and in
the Demo Programs. Trying to remove this call from history and replace with sending as a
parameter to Window.

Layout(rows)

Parameter Descriptions:

Name Meaning

rows List[List[Elements]] Your entire layout

386/511

return (Window} self so that you can chain method calls

Name Meaning

LoadFromDisk

Restore values from a previous call to SaveToDisk which saves the returned values dictionary
in Pickle format

LoadFromDisk(filename)

Parameter Descriptions:

Name Meaning

filename (str) Pickle Filename to
load

Maximize

Maximize the window. This is done differently on a windows system versus a linux or mac one.
For non-Windows the root attribute '-fullscreen' is set to True. For Windows the "root" state is
changed to "zoomed" The reason for the difference is the title bar is removed in some cases
when using fullscreen option

Maximize()

Minimize

Minimize this window to the task bar

Minimize()

Move

Move the upper left corner of this window to the x,y coordinates provided

Move(x, y)

Parameter Descriptions:

Name Meaning

387/511

x (int) x coordinate in
pixels

y (int) y coordinate in pixels

Name Meaning

Normal

Restore a window to a non-maximized state. Does different things depending on platform. See
Maximize for more.

Normal()

Read

THE biggest deal method in the Window class! This is how you get all of your data from your
Window. Pass in a timeout (in milliseconds) to wait for a maximum of timeout milliseconds.
Will return timeout_key if no other GUI events happen first.

Read(timeout=None, timeout_key="__TIMEOUT__")

Parameter Descriptions:

Name Meaning

timeout (int) Milliseconds to wait until the Read will return IF no other GUI
events happen first

timeout_key (Any) The value that will be returned from the call if the timer expired

return Tuple[(Any), Union[Dict[Any:Any]], List[Any], None] (event, values)
(event or timeout_key or None, Dictionary of values or List of values
from all elements in the Window)

Reappear

Causes a window previously made to "Disappear" (using that method). Does this by restoring
the alpha channel

Reappear()

Refresh

388/511

Refreshes the window by calling tkroot.update(). Can sometimes get away with a refresh
instead of a Read. Use this call when you want something to appear in your Window
immediately (as soon as this function is called). Without this call your changes to a Window will
not be visible to the user until the next Read call

Refresh()

Name Meaning

return (Window) self so that method calls can be easily "chained"

SaveToDisk

Saves the values contained in each of the input areas of the form. Basically saves what would
be returned from a call to Read. It takes these results and saves them to disk using pickle

SaveToDisk(filename)

Parameter Descriptions:

Name Meaning

filename (str) Filename to save the values to in pickled
form

SetAlpha

Sets the Alpha Channel for a window. Values are between 0 and 1 where 0 is completely
transparent

SetAlpha(alpha)

Parameter Descriptions:

Name Meaning

alpha (float) 0 to 1. 0 is completely transparent. 1 is completely visible and solid
(can't see through)

SetIcon

Sets the icon that is shown on the title bar and on the task bar. Can pass in: * a filename which
must be a .ICO icon file for windows * a bytes object * a BASE64 encoded file held in a variable

389/511

SetIcon(icon=None, pngbase64=None)

Parameter Descriptions:

Name Meaning

icon (str) Filename or bytes object

pngbase64 (str) Base64 encoded GIF or PNG
file

SetTransparentColor

Set the color that will be transparent in your window. Areas with this color will be SEE
THROUGH.

SetTransparentColor(color)

Parameter Descriptions:

Name Meaning

color (str) Color string that defines the transparent
color

Size

property: Size

Return the current size of the window in pixels

Name Meaning

return Tuple[(int), (int)] the (width, height) of the
window

UnHide

Used to bring back a window that was previously hidden using the Hide method

UnHide()

VisibilityChanged

390/511

This is a completely dummy method that does nothing. It is here so that PySimpleGUIQt
programs can make this call and then have that same source run on plain PySimpleGUI.

VisibilityChanged()

Name Meaning

return

add_row

Adds a single row of elements to a window's self.Rows variables. Generally speaking this is
NOT how users should be building Window layouts. Users, create a single layout (a list of lists)
and pass as a parameter to Window object, or call Window.Layout(layout)

add_row(args)

Parameter Descriptions:

Name Meaning

*args List[Elements]

add_rows

Loops through a list of lists of elements and adds each row, list, to the layout. This is NOT the
best way to go about creating a window. Sending the entire layout at one time and passing it
as a parameter to the Window call is better.

add_rows(rows)

Parameter Descriptions:

Name Meaning

rows List[List[Elements]] A list of a list of
elements

alpha_channel

property: alpha_channel

A property that changes the current alpha channel value (internal value)

391/511

Name Meaning

return (float) the current alpha channel setting according to self, not read directly
from tkinter

bring_to_front

Brings this window to the top of all other windows (perhaps may not be brought before a
window made to "stay on top")

bring_to_front()

close

Closes window. Users can safely call even if window has been destroyed. Should always call
when done with a window so that resources are properly freed up within your thread.

close()

current_location

Get the current location of the window's top left corner

current_location()

Name Meaning

return Tuple[(int), (int)] The x and y location in tuple form
(x,y)

disable

Disables window from taking any input from the user

disable()

disable_debugger

Disable the internal debugger. By default the debugger is ENABLED

disable_debugger()

disappear

392/511

Causes a window to "disappear" from the screen, but remain on the taskbar. It does this by
turning the alpha channel to 0. NOTE that on some platforms alpha is not supported. The
window will remain showing on these platforms. The Raspberry Pi for example does not have
an alpha setting

disappear()

elem

Find element object associated with the provided key. THIS METHOD IS NO LONGER NEEDED
to be called by the user

You can perform the same operation by writing this statement: element = window[key]

You can drop the entire "FindElement" function name and use [] instead.

Typically used in combination with a call to element's Update method (or any other element
method!): window[key].Update(new_value)

Versus the "old way" window.FindElement(key).Update(new_value)

This call can be abbreviated to any of these: FindElement == Element == Find Rememeber that
this call will return None if no match is found which may cause your code to crash if not
checked for.

elem(key, silent_on_error=False)

Parameter Descriptions:

Name Meaning

key (Any) Used with window.FindElement and with return values to
uniquely identify this element

silent_on_error (bool) If True do not display popup nor print warning of key errors

return Union[Element, Error Element, None] Return value can be:
* the Element that matches the supplied key if found
* an Error Element if silent_on_error is False
* None if silent_on_error True

element

Find element object associated with the provided key. THIS METHOD IS NO LONGER NEEDED
to be called by the user

393/511

You can perform the same operation by writing this statement: element = window[key]

You can drop the entire "FindElement" function name and use [] instead.

Typically used in combination with a call to element's Update method (or any other element
method!): window[key].Update(new_value)

Versus the "old way" window.FindElement(key).Update(new_value)

This call can be abbreviated to any of these: FindElement == Element == Find Rememeber that
this call will return None if no match is found which may cause your code to crash if not
checked for.

element(key, silent_on_error=False)

Parameter Descriptions:

Name Meaning

key (Any) Used with window.FindElement and with return values to
uniquely identify this element

silent_on_error (bool) If True do not display popup nor print warning of key errors

return Union[Element, Error Element, None] Return value can be:
* the Element that matches the supplied key if found
* an Error Element if silent_on_error is False
* None if silent_on_error True

enable

Re-enables window to take user input after having it be Disabled previously

enable()

enable_debugger

Enables the internal debugger. By default, the debugger IS enabled

enable_debugger()

fill

Fill in elements that are input fields with data based on a 'values dictionary'

fill(values_dict)
394/511

Parameter Descriptions:

Name Meaning

values_dict (Dict[Any:Any]) {Element key : value} pairs

return (Window) returns self so can be chained with other
methods

finalize

Use this method to cause your layout to built into a real tkinter window. In reality this method
is like Read(timeout=0). It doesn't block and uses your layout to create tkinter widgets to
represent the elements. Lots of action!

finalize()

Name Meaning

return (Window) Returns 'self' so that method "Chaining" can happen (read up about
it as it's very cool!)

find

Find element object associated with the provided key. THIS METHOD IS NO LONGER NEEDED
to be called by the user

You can perform the same operation by writing this statement: element = window[key]

You can drop the entire "FindElement" function name and use [] instead.

Typically used in combination with a call to element's Update method (or any other element
method!): window[key].Update(new_value)

Versus the "old way" window.FindElement(key).Update(new_value)

This call can be abbreviated to any of these: FindElement == Element == Find Rememeber that
this call will return None if no match is found which may cause your code to crash if not
checked for.

find(key, silent_on_error=False)

Parameter Descriptions:

395/511

Name Meaning

key (Any) Used with window.FindElement and with return values to
uniquely identify this element

silent_on_error (bool) If True do not display popup nor print warning of key errors

return Union[Element, Error Element, None] Return value can be:
* the Element that matches the supplied key if found
* an Error Element if silent_on_error is False
* None if silent_on_error True

find_element

Find element object associated with the provided key. THIS METHOD IS NO LONGER NEEDED
to be called by the user

You can perform the same operation by writing this statement: element = window[key]

You can drop the entire "FindElement" function name and use [] instead.

Typically used in combination with a call to element's Update method (or any other element
method!): window[key].Update(new_value)

Versus the "old way" window.FindElement(key).Update(new_value)

This call can be abbreviated to any of these: FindElement == Element == Find Rememeber that
this call will return None if no match is found which may cause your code to crash if not
checked for.

find_element(key, silent_on_error=False)

Parameter Descriptions:

Name Meaning

key (Any) Used with window.FindElement and with return values to
uniquely identify this element

silent_on_error (bool) If True do not display popup nor print warning of key errors

396/511

return Union[Element, Error Element, None] Return value can be:
* the Element that matches the supplied key if found
* an Error Element if silent_on_error is False
* None if silent_on_error True

Name Meaning

find_element_with_focus

Returns the Element that currently has focus as reported by tkinter. If no element is found
None is returned!

find_element_with_focus()

Name Meaning

return Union[Element, None] An Element if one has been found with focus or None
if no element found

get_screen_dimensions

Get the screen dimensions. NOTE - you must have a window already open for this to work
(blame tkinter not me)

get_screen_dimensions()

Name Meaning

return Union[Tuple[None, None], Tuple[width, height]] Tuple containing width and
height of screen in pixels

get_screen_size

Returns the size of the "screen" as determined by tkinter. This can vary depending on your
operating system and the number of monitors installed on your system. For Windows, the
primary monitor's size is returns. On some multi-monitored Linux systems, the monitors are
combined and the total size is reported as if one screen.

get_screen_size() -> Tuple[int, int] - Size of the screen in pixels as determined by tkinter

grab_any_where_off

397/511

Turns off Grab Anywhere functionality AFTER a window has been created. Don't try on a
window that's not yet been Finalized or Read.

grab_any_where_off()

grab_any_where_on

Turns on Grab Anywhere functionality AFTER a window has been created. Don't try on a
window that's not yet been Finalized or Read.

grab_any_where_on()

hide

Hides the window from the screen and the task bar

hide()

layout

Second of two preferred ways of telling a Window what its layout is. The other way is to pass
the layout as a parameter to Window object. The parameter method is the currently preferred
method. This call to Layout has been removed from examples contained in documents and in
the Demo Programs. Trying to remove this call from history and replace with sending as a
parameter to Window.

layout(rows)

Parameter Descriptions:

Name Meaning

rows List[List[Elements]] Your entire layout

return (Window} self so that you can chain method calls

load_from_disk

Restore values from a previous call to SaveToDisk which saves the returned values dictionary
in Pickle format

load_from_disk(filename)

Parameter Descriptions:

398/511

Name Meaning

filename (str) Pickle Filename to
load

maximize

Maximize the window. This is done differently on a windows system versus a linux or mac one.
For non-Windows the root attribute '-fullscreen' is set to True. For Windows the "root" state is
changed to "zoomed" The reason for the difference is the title bar is removed in some cases
when using fullscreen option

maximize()

minimize

Minimize this window to the task bar

minimize()

move

Move the upper left corner of this window to the x,y coordinates provided

move(x, y)

Parameter Descriptions:

Name Meaning

x (int) x coordinate in
pixels

y (int) y coordinate in pixels

normal

Restore a window to a non-maximized state. Does different things depending on platform. See
Maximize for more.

normal()

read

399/511

THE biggest deal method in the Window class! This is how you get all of your data from your
Window. Pass in a timeout (in milliseconds) to wait for a maximum of timeout milliseconds.
Will return timeout_key if no other GUI events happen first.

read(timeout=None, timeout_key="__TIMEOUT__")

Parameter Descriptions:

Name Meaning

timeout (int) Milliseconds to wait until the Read will return IF no other GUI
events happen first

timeout_key (Any) The value that will be returned from the call if the timer expired

return Tuple[(Any), Union[Dict[Any:Any]], List[Any], None] (event, values)
(event or timeout_key or None, Dictionary of values or List of values
from all elements in the Window)

reappear

Causes a window previously made to "Disappear" (using that method). Does this by restoring
the alpha channel

reappear()

refresh

Refreshes the window by calling tkroot.update(). Can sometimes get away with a refresh
instead of a Read. Use this call when you want something to appear in your Window
immediately (as soon as this function is called). Without this call your changes to a Window will
not be visible to the user until the next Read call

refresh()

Name Meaning

return (Window) self so that method calls can be easily "chained"

save_to_disk

Saves the values contained in each of the input areas of the form. Basically saves what would
be returned from a call to Read. It takes these results and saves them to disk using pickle

400/511

save_to_disk(filename)

Parameter Descriptions:

Name Meaning

filename (str) Filename to save the values to in pickled
form

set_alpha

Sets the Alpha Channel for a window. Values are between 0 and 1 where 0 is completely
transparent

set_alpha(alpha)

Parameter Descriptions:

Name Meaning

alpha (float) 0 to 1. 0 is completely transparent. 1 is completely visible and solid
(can't see through)

set_icon

Sets the icon that is shown on the title bar and on the task bar. Can pass in: * a filename which
must be a .ICO icon file for windows * a bytes object * a BASE64 encoded file held in a variable

set_icon(icon=None, pngbase64=None)

Parameter Descriptions:

Name Meaning

icon (str) Filename or bytes object

pngbase64 (str) Base64 encoded GIF or PNG
file

set_transparent_color

Set the color that will be transparent in your window. Areas with this color will be SEE
THROUGH.

set_transparent_color(color)
401/511

Parameter Descriptions:

Name Meaning

color (str) Color string that defines the transparent
color

size

property: size

Return the current size of the window in pixels

Name Meaning

return Tuple[(int), (int)] the (width, height) of the
window

un_hide

Used to bring back a window that was previously hidden using the Hide method

un_hide()

visibility_changed

This is a completely dummy method that does nothing. It is here so that PySimpleGUIQt
programs can make this call and then have that same source run on plain PySimpleGUI.

visibility_changed()

Name Meaning

return

402/511

CButton(button_text,
 image_filename=None,
 image_data=None,
 image_size=(None, None),
 image_subsample=None,
 border_width=None,
 tooltip=None,
 size=(None, None),
 auto_size_button=None,
 button_color=None,
 font=None,
 bind_return_key=False,
 disabled=False,
 focus=False,
 pad=None,
 key=None,
 metadata=None)

Parameter Descriptions:

Name Meaning

button_text text in the button

image_filename image filename if there is a button image

image_data in-RAM image to be displayed on button

image_size size of button image in pixels

image_subsample amount to reduce the size of the image

border_width width of border around element

tooltip (str) text, that will appear when mouse hovers over the element

size (w,h) w=characters-wide, h=rows-high (Default = (None))

auto_size_button True if button size is determined by button text

button_color button color (foreground, background)

font specifies the font family, size, etc

bind_return_key (Default = False)

disabled set disable state for element (Default = False)

403/511

focus if focus should be set to this

pad Amount of padding to put around element

key Used with window.FindElement and with return values to uniquely
identify this element

return (Button)

Name Meaning

CalendarButton(button_text,
 target=(None, None),
 close_when_date_chosen=True,
 default_date_m_d_y=(None, None, None),
 image_filename=None,
 image_data=None,
 image_size=(None, None),
 image_subsample=None,
 tooltip=None,
 border_width=None,
 size=(None, None),
 auto_size_button=None,
 button_color=None,
 disabled=False,
 font=None,
 bind_return_key=False,
 focus=False,
 pad=None,
 key=None,
 locale=None,
 format=None,
 metadata=None)

Parameter Descriptions:

Name Meaning

button_text text in the button

target

close_when_date_chosen (Default = True)

default_date_m_d_y (Default = (None))

None

404/511

image_filename image filename if there is a button image

image_data in-RAM image to be displayed on button

image_size (Default = (None))

image_subsample amount to reduce the size of the image

tooltip (str) text, that will appear when mouse hovers over the
element

border_width width of border around element

size (w,h) w=characters-wide, h=rows-high (Default = (None))

auto_size_button True if button size is determined by button text

button_color button color (foreground, background)

disabled set disable state for element (Default = False)

font specifies the font family, size, etc

bind_return_key (Default = False)

focus if focus should be set to this

pad Amount of padding to put around element

key Used with window.FindElement and with return values to
uniquely identify this element

locale

format

return (Button)

Name Meaning

405/511

Cancel(button_text="Cancel",
 size=(None, None),
 auto_size_button=None,
 button_color=None,
 disabled=False,
 tooltip=None,
 font=None,
 bind_return_key=False,
 focus=False,
 pad=None,
 key=None,
 metadata=None)

Parameter Descriptions:

Name Meaning

button_text text in the button (Default value = 'Cancel')

size (w,h) w=characters-wide, h=rows-high

auto_size_button True if button size is determined by button text

button_color button color (foreground, background)

disabled set disable state for element (Default = False)

tooltip (str) text, that will appear when mouse hovers over the element

font specifies the font family, size, etc

bind_return_key (Default = False)

focus if focus should be set to this

pad Amount of padding to put around element

key Used with window.FindElement and with return values to uniquely
identify this element

Change the "color scheme" of all future PySimpleGUI Windows. The scheme are string names
that specify a group of colors. Background colors, text colors, button colors. There are 13
different color settings that are changed at one time using a single call to ChangeLookAndFeel
The look and feel table itself has these indexe into the dictionary LOOK_AND_FEEL_TABLE
SystemDefault Material1 Material2 Reddit Topanga GreenTan Dark LightGreen Dark2 Black
Tan TanBlue DarkTanBlue DarkAmber DarkBlue Reds Green BluePurple Purple BlueMono
GreenMono BrownBlue BrightColors NeutralBlue Kayak SandyBeach TealMono

406/511

ChangeLookAndFeel(index, force=False)

Parameter Descriptions:

Name Meaning

index (str) the name of the index into the Look and Feel table

force (bool) if True allows Macs to use the look and feel feature. Otherwise Macs
are blocked due to problems with button colors

CloseButton(button_text,
 image_filename=None,
 image_data=None,
 image_size=(None, None),
 image_subsample=None,
 border_width=None,
 tooltip=None,
 size=(None, None),
 auto_size_button=None,
 button_color=None,
 font=None,
 bind_return_key=False,
 disabled=False,
 focus=False,
 pad=None,
 key=None,
 metadata=None)

Parameter Descriptions:

Name Meaning

button_text text in the button

image_filename image filename if there is a button image

image_data in-RAM image to be displayed on button

image_size size of button image in pixels

image_subsample amount to reduce the size of the image

border_width width of border around element

tooltip (str) text, that will appear when mouse hovers over the element

size (w,h) w=characters-wide, h=rows-high (Default = (None))
407/511

auto_size_button True if button size is determined by button text

button_color button color (foreground, background)

font specifies the font family, size, etc

bind_return_key (Default = False)

disabled set disable state for element (Default = False)

focus if focus should be set to this

pad Amount of padding to put around element

key Used with window.FindElement and with return values to uniquely
identify this element

return (Button)

Name Meaning

ColorChooserButton(button_text,
 target=(None, None),
 image_filename=None,
 image_data=None,
 image_size=(None, None),
 image_subsample=None,
 tooltip=None,
 border_width=None,
 size=(None, None),
 auto_size_button=None,
 button_color=None,
 disabled=False,
 font=None,
 bind_return_key=False,
 focus=False,
 pad=None,
 key=None,
 metadata=None)

Parameter Descriptions:

Name Meaning

button_text text in the button

target
408/511

image_filename image filename if there is a button image

image_data in-RAM image to be displayed on button

image_size (Default = (None))

image_subsample amount to reduce the size of the image

tooltip (str) text, that will appear when mouse hovers over the element

border_width width of border around element

size (w,h) w=characters-wide, h=rows-high (Default = (None))

auto_size_button True if button size is determined by button text

button_color button color (foreground, background)

disabled set disable state for element (Default = False)

font specifies the font family, size, etc

bind_return_key (Default = False)

focus if focus should be set to this

pad Amount of padding to put around element

key Used with window.FindElement and with return values to uniquely
identify this element

return (Button)

Name Meaning

409/511

Debug(button_text="",
 size=(None, None),
 auto_size_button=None,
 button_color=None,
 disabled=False,
 font=None,
 tooltip=None,
 bind_return_key=False,
 focus=False,
 pad=None,
 key=None,
 metadata=None)

Parameter Descriptions:

Name Meaning

button_text text in the button (Default value = '')

size (w,h) w=characters-wide, h=rows-high

auto_size_button True if button size is determined by button text

button_color button color (foreground, background)

disabled set disable state for element (Default = False)

font specifies the font family, size, etc

tooltip (str) text, that will appear when mouse hovers over the element

bind_return_key (Default = False)

focus if focus should be set to this

pad Amount of padding to put around element

key Used with window.FindElement and with return values to uniquely
identify this element

return (Button)

410/511

DummyButton(button_text,
 image_filename=None,
 image_data=None,
 image_size=(None, None),
 image_subsample=None,
 border_width=None,
 tooltip=None,
 size=(None, None),
 auto_size_button=None,
 button_color=None,
 font=None,
 disabled=False,
 bind_return_key=False,
 focus=False,
 pad=None,
 key=None,
 metadata=None)

Parameter Descriptions:

Name Meaning

button_text text in the button

image_filename image filename if there is a button image

image_data in-RAM image to be displayed on button

image_size size of button image in pixels

image_subsample amount to reduce the size of the image

border_width width of border around element

tooltip (str) text, that will appear when mouse hovers over the element

size (w,h) w=characters-wide, h=rows-high (Default = (None))

auto_size_button True if button size is determined by button text

button_color button color (foreground, background)

font specifies the font family, size, etc

disabled set disable state for element (Default = False)

bind_return_key (Default = False)

411/511

focus if focus should be set to this

pad Amount of padding to put around element

key Used with window.FindElement and with return values to uniquely
identify this element

return (Button)

Name Meaning

EasyPrint(args,
 size=(None, None),
 end=None,
 sep=None,
 location=(None, None),
 font=None,
 no_titlebar=False,
 no_button=False,
 grab_anywhere=False,
 keep_on_top=False,
 do_not_reroute_stdout=True)

Parameter Descriptions:

Name Meaning

*args

size Tuple[int, int] (w,h) w=characters-wide, h=rows-high

end

sep

location Location on screen to display

font specifies the font family, size, etc

no_titlebar (Default = False)

no_button (Default = False)

grab_anywhere If True can grab anywhere to move the window (Default =
False)

412/511

do_not_reroute_stdout (Default = True)

Name Meaning

EasyPrintClose()

Exit(button_text="Exit",
 size=(None, None),
 auto_size_button=None,
 button_color=None,
 disabled=False,
 tooltip=None,
 font=None,
 bind_return_key=False,
 focus=False,
 pad=None,
 key=None,
 metadata=None)

Parameter Descriptions:

Name Meaning

button_text text in the button (Default value = 'Exit')

size (w,h) w=characters-wide, h=rows-high

auto_size_button True if button size is determined by button text

button_color button color (foreground, background)

disabled set disable state for element (Default = False)

tooltip (str) text, that will appear when mouse hovers over the element

font specifies the font family, size, etc

bind_return_key (Default = False)

focus if focus should be set to this

pad Amount of padding to put around element

key Used with window.FindElement and with return values to uniquely
identify this element

413/511

FileBrowse(button_text="Browse",
 target=(555666777, -1),
 file_types=(('ALL Files', '*.*'),),
 initial_folder=None,
 tooltip=None,
 size=(None, None),
 auto_size_button=None,
 button_color=None,
 change_submits=False,
 enable_events=False,
 font=None,
 disabled=False,
 pad=None,
 key=None,
 metadata=None)

Parameter Descriptions:

Name Meaning

button_text text in the button (Default value = 'Browse')

target key or (row,col) target for the button (Default value = (ThisRow, -1))

file_types (Default value = (("ALL Files", ".")))

initial_folder starting path for folders and files

tooltip (str) text, that will appear when mouse hovers over the element

size (w,h) w=characters-wide, h=rows-high

auto_size_button True if button size is determined by button text

button_color button color (foreground, background)

change_submits If True, pressing Enter key submits window (Default = False)

enable_events Turns on the element specific events.(Default = False)

font Union[str, Tuple[str, int]] specifies the font family, size, etc

disabled set disable state for element (Default = False)

pad Amount of padding to put around element

key Used with window.FindElement and with return values to uniquely
identify this element

414/511

return (Button)

Name Meaning

FileSaveAs(button_text="Save As...",
 target=(555666777, -1),
 file_types=(('ALL Files', '*.*'),),
 initial_folder=None,
 disabled=False,
 tooltip=None,
 size=(None, None),
 auto_size_button=None,
 button_color=None,
 change_submits=False,
 enable_events=False,
 font=None,
 pad=None,
 key=None,
 metadata=None)

Parameter Descriptions:

Name Meaning

button_text text in the button (Default value = 'Save As...')

target key or (row,col) target for the button (Default value = (ThisRow, -1))

file_types (Default value = (("ALL Files", ".")))

initial_folder starting path for folders and files

disabled set disable state for element (Default = False)

tooltip (str) text, that will appear when mouse hovers over the element

size (w,h) w=characters-wide, h=rows-high

auto_size_button True if button size is determined by button text

button_color button color (foreground, background)

change_submits If True, pressing Enter key submits window (Default = False)

enable_events Turns on the element specific events.(Default = False)

415/511

font Union[str, Tuple[str, int]] specifies the font family, size, etc

pad Amount of padding to put around element

key Used with window.FindElement and with return values to uniquely
identify this element

return (Button)

Name Meaning

FilesBrowse(button_text="Browse",
 target=(555666777, -1),
 file_types=(('ALL Files', '*.*'),),
 disabled=False,
 initial_folder=None,
 tooltip=None,
 size=(None, None),
 auto_size_button=None,
 button_color=None,
 change_submits=False,
 enable_events=False,
 font=None,
 pad=None,
 key=None,
 metadata=None)

Parameter Descriptions:

Name Meaning

button_text text in the button (Default value = 'Browse')

target key or (row,col) target for the button (Default value = (ThisRow, -1))

file_types (Default value = (("ALL Files", ".")))

disabled set disable state for element (Default = False)

initial_folder starting path for folders and files

tooltip (str) text, that will appear when mouse hovers over the element

size (w,h) w=characters-wide, h=rows-high

auto_size_button True if button size is determined by button text

416/511

button_color button color (foreground, background)

change_submits If True, pressing Enter key submits window (Default = False)

enable_events Turns on the element specific events.(Default = False)

font Union[str, Tuple[str, int]] specifies the font family, size, etc

pad Amount of padding to put around element

key Used with window.FindElement and with return values to uniquely
identify this element

return (Button)

Name Meaning

Fills a window with values provided in a values dictionary { element_key : new_value }

FillFormWithValues(window, values_dict)

Parameter Descriptions:

Name Meaning

window (Window) The window object to fill

values_dict (Dict[Any:Any]) A dictionary with element keys as key and value is values
parm for Update call

FolderBrowse(button_text="Browse",
 target=(555666777, -1),
 initial_folder=None,
 tooltip=None,
 size=(None, None),
 auto_size_button=None,
 button_color=None,
 disabled=False,
 change_submits=False,
 enable_events=False,
 font=None,
 pad=None,
 key=None,
 metadata=None)

Parameter Descriptions:

417/511

Name Meaning

button_text text in the button (Default value = 'Browse')

target key or (row,col) target for the button (Default value = (ThisRow, -1))

initial_folder starting path for folders and files

tooltip (str) text, that will appear when mouse hovers over the element

size (w,h) w=characters-wide, h=rows-high

auto_size_button True if button size is determined by button text

button_color button color (foreground, background)

disabled set disable state for element (Default = False)

change_submits If True, pressing Enter key submits window (Default = False)

enable_events Turns on the element specific events.(Default = False)

font Union[str, Tuple[str, int]] specifies the font family, size, etc

pad Amount of padding to put around element

key Used with window.FindElement and with return values to uniquely
identify this element

return (Button)

Help(button_text="Help",
 size=(None, None),
 auto_size_button=None,
 button_color=None,
 disabled=False,
 font=None,
 tooltip=None,
 bind_return_key=False,
 focus=False,
 pad=None,
 key=None,
 metadata=None)

Parameter Descriptions:

418/511

Name Meaning

button_text text in the button (Default value = 'Help')

size (w,h) w=characters-wide, h=rows-high

auto_size_button True if button size is determined by button text

button_color button color (foreground, background)

disabled set disable state for element (Default = False)

font specifies the font family, size, etc

tooltip (str) text, that will appear when mouse hovers over the element

bind_return_key (Default = False)

focus if focus should be set to this

pad Amount of padding to put around element

key Used with window.FindElement and with return values to uniquely
identify this element

return (Button)

ListOfLookAndFeelValues()

No(button_text="No",
 size=(None, None),
 auto_size_button=None,
 button_color=None,
 disabled=False,
 tooltip=None,
 font=None,
 bind_return_key=False,
 focus=False,
 pad=None,
 key=None,
 metadata=None)

Parameter Descriptions:

419/511

Name Meaning

button_text text in the button (Default value = 'No')

size (w,h) w=characters-wide, h=rows-high

auto_size_button True if button size is determined by button text

button_color button color (foreground, background)

disabled set disable state for element (Default = False)

tooltip (str) text, that will appear when mouse hovers over the element

font specifies the font family, size, etc

bind_return_key (Default = False)

focus if focus should be set to this

pad Amount of padding to put around element

key Used with window.FindElement and with return values to uniquely
identify this element

OK(button_text="OK",
 size=(None, None),
 auto_size_button=None,
 button_color=None,
 disabled=False,
 bind_return_key=True,
 tooltip=None,
 font=None,
 focus=False,
 pad=None,
 key=None,
 metadata=None)

Parameter Descriptions:

Name Meaning

button_text text in the button (Default value = 'OK')

size (w,h) w=characters-wide, h=rows-high

auto_size_button True if button size is determined by button text

420/511

button_color button color (foreground, background)

disabled set disable state for element (Default = False)

bind_return_key (Default = True)

tooltip (str) text, that will appear when mouse hovers over the element

font specifies the font family, size, etc

focus if focus should be set to this

pad Amount of padding to put around element

key Used with window.FindElement and with return values to uniquely
identify this element

return (Button)

Name Meaning

ObjToString(obj, extra=" ")

Parameter Descriptions:

Name Meaning

obj

extra (Default value = ' ')

ObjToStringSingleObj(obj)

Parameter Descriptions:

Name Meaning

obj

421/511

Ok(button_text="Ok",
 size=(None, None),
 auto_size_button=None,
 button_color=None,
 disabled=False,
 bind_return_key=True,
 tooltip=None,
 font=None,
 focus=False,
 pad=None,
 key=None,
 metadata=None)

Parameter Descriptions:

Name Meaning

button_text text in the button (Default value = 'Ok')

size (w,h) w=characters-wide, h=rows-high

auto_size_button True if button size is determined by button text

button_color button color (foreground, background)

disabled set disable state for element (Default = False)

bind_return_key (Default = True)

tooltip (str) text, that will appear when mouse hovers over the element

font specifies the font family, size, etc

focus if focus should be set to this

pad Amount of padding to put around element

key Used with window.FindElement and with return values to uniquely
identify this element

return (Button)

422/511

OneLineProgressMeter(title,
 current_value,
 max_value,
 key,
 args,
 orientation="v",
 bar_color=(None, None),
 button_color=None,
 size=(20, 20),
 border_width=None,
 grab_anywhere=False)

Parameter Descriptions:

Name Meaning

title text to display

current_value current progressbar value

max_value max value of progressbar

key Used with window.FindElement and with return values to uniquely
identify this element

*args stuff to output.

orientation 'horizontal' or 'vertical' ('h' or 'v' work) (Default value = 'vertical')
(Default value = 'v')

bar_color

button_color button color (foreground, background)

size Tuple[int, int] (w,h) w=characters-wide, h=rows-high (Default value =
DEFAULT_PROGRESS_BAR_SIZE)

border_width width of border around element

grab_anywhere If True can grab anywhere to move the window (Default = False)

OneLineProgressMeterCancel(key)

Parameter Descriptions:

423/511

Name Meaning

key Used with window.FindElement and with return values to uniquely identify
this element

Open(button_text="Open",
 size=(None, None),
 auto_size_button=None,
 button_color=None,
 disabled=False,
 bind_return_key=True,
 tooltip=None,
 font=None,
 focus=False,
 pad=None,
 key=None,
 metadata=None)

Parameter Descriptions:

Name Meaning

button_text text in the button (Default value = 'Open')

size (w,h) w=characters-wide, h=rows-high

auto_size_button True if button size is determined by button text

button_color button color (foreground, background)

disabled set disable state for element (Default = False)

bind_return_key (Default = True)

tooltip (str) text, that will appear when mouse hovers over the element

font specifies the font family, size, etc

focus if focus should be set to this

pad Amount of padding to put around element

key Used with window.FindElement and with return values to uniquely
identify this element

Show Popup box that doesn't block and closes itself

424/511

PopupQuick(args,
 title=None,
 button_type=0,
 button_color=None,
 background_color=None,
 text_color=None,
 auto_close=True,
 auto_close_duration=2,
 non_blocking=True,
 icon=None,
 line_width=None,
 font=None,
 no_titlebar=False,
 grab_anywhere=False,
 keep_on_top=False,
 location=(None, None))

Parameter Descriptions:

Name Meaning

*args

title

button_type (Default value = POPUP_BUTTONS_OK)

button_color button color (foreground, background)

background_color color of background

text_color color of the text

auto_close (Default = True)

auto_close_duration (Default value = 2)

non_blocking (Default = True)

icon Icon to display

line_width Width of lines in characters

font specifies the font family, size, etc

no_titlebar (Default = False)

425/511

grab_anywhere If True can grab anywhere to move the window (Default =
False)

location

Name Meaning

Show Popup window with no titlebar, doesn't block, and auto closes itself.

PopupQuickMessage(args,
 title=None,
 button_type=5,
 button_color=None,
 background_color=None,
 text_color=None,
 auto_close=True,
 auto_close_duration=2,
 non_blocking=True,
 icon=None,
 line_width=None,
 font=None,
 no_titlebar=True,
 grab_anywhere=False,
 keep_on_top=False,
 location=(None, None))

Parameter Descriptions:

Name Meaning

*args

title

button_type (Default value = POPUP_BUTTONS_NO_BUTTONS)

button_color button color (foreground, background)

background_color color of background

text_color color of the text

auto_close (Default = True)

auto_close_duration (Default value = 2)

non_blocking (Default = True)

426/511

icon Icon to display

line_width Width of lines in characters

font specifies the font family, size, etc

no_titlebar (Default = True)

grab_anywhere If True can grab anywhere to move the window (Default =
False)

location

Name Meaning

Show a scrolled Popup window containing the user's text that was supplied. Use with as many
items to print as you want, just like a print statement.

PopupScrolled(args,
 title=None,
 button_color=None,
 yes_no=False,
 auto_close=False,
 auto_close_duration=None,
 size=(None, None),
 location=(None, None),
 non_blocking=False)

Parameter Descriptions:

Name Meaning

*args (Any) Variable number of items to display

title (str) Title to display in the window.

button_color Tuple[str, str] button color (foreground, background)

yes_no (bool) If True, displays Yes and No buttons instead of Ok

auto_close (bool) if True window will close itself

auto_close_duration Union[int, float] Older versions only accept int. Time in seconds
until window will close

size Tuple[int, int] (w,h) w=characters-wide, h=rows-high

427/511

location Tuple[int, int] Location on the screen to place the upper left
corner of the window

non_blocking (bool) if True the call will immediately return rather than waiting
on user input

return Union[str, None, TIMEOUT_KEY] Returns text of the button that
was pressed. None will be returned if user closed window with X

Name Meaning

Popup that closes itself after some time period

PopupTimed(args,
 title=None,
 button_type=0,
 button_color=None,
 background_color=None,
 text_color=None,
 auto_close=True,
 auto_close_duration=None,
 non_blocking=False,
 icon=None,
 line_width=None,
 font=None,
 no_titlebar=False,
 grab_anywhere=False,
 keep_on_top=False,
 location=(None, None))

Parameter Descriptions:

Name Meaning

*args

title

button_type (Default value = POPUP_BUTTONS_OK)

button_color button color (foreground, background)

background_color color of background

text_color color of the text

428/511

auto_close (Default = True)

auto_close_duration

non_blocking (Default = False)

icon Icon to display

line_width Width of lines in characters

font specifies the font family, size, etc

no_titlebar (Default = False)

grab_anywhere If True can grab anywhere to move the window (Default =
False)

location

Name Meaning

Display Popup with Yes and No buttons

PopupYesNo(args,
 title=None,
 button_color=None,
 background_color=None,
 text_color=None,
 auto_close=False,
 auto_close_duration=None,
 non_blocking=False,
 icon=None,
 line_width=None,
 font=None,
 no_titlebar=False,
 grab_anywhere=False,
 keep_on_top=False,
 location=(None, None))

Parameter Descriptions:

Name Meaning

*args

title

429/511

button_color button color (foreground, background)

background_color color of background

text_color color of the text

auto_close (Default = False)

auto_close_duration

non_blocking (Default = False)

icon Icon to display

line_width Width of lines in characters

font specifies the font family, size, etc

no_titlebar (Default = False)

grab_anywhere If True can grab anywhere to move the window (Default =
False)

location Location on screen to display

return Union["Yes", "No", None]

Name Meaning

Print(args,
 size=(None, None),
 end=None,
 sep=None,
 location=(None, None),
 font=None,
 no_titlebar=False,
 no_button=False,
 grab_anywhere=False,
 keep_on_top=False,
 do_not_reroute_stdout=True)

Parameter Descriptions:

Name Meaning

*args

430/511

size Tuple[int, int] (w,h) w=characters-wide, h=rows-high

end

sep

location Location on screen to display

font specifies the font family, size, etc

no_titlebar (Default = False)

no_button (Default = False)

grab_anywhere If True can grab anywhere to move the window (Default =
False)

do_not_reroute_stdout (Default = True)

Name Meaning

PrintClose()

Quit(button_text="Quit",
 size=(None, None),
 auto_size_button=None,
 button_color=None,
 disabled=False,
 tooltip=None,
 font=None,
 bind_return_key=False,
 focus=False,
 pad=None,
 key=None,
 metadata=None)

Parameter Descriptions:

Name Meaning

button_text text in the button (Default value = 'Quit')

size (w,h) w=characters-wide, h=rows-high

auto_size_button True if button size is determined by button text

button_color button color (foreground, background)

431/511

disabled set disable state for element (Default = False)

tooltip (str) text, that will appear when mouse hovers over the element

font specifies the font family, size, etc

bind_return_key (Default = False)

focus if focus should be set to this

pad Amount of padding to put around element

key Used with window.FindElement and with return values to uniquely
identify this element

return (Button)

Name Meaning

RButton(button_text,
 image_filename=None,
 image_data=None,
 image_size=(None, None),
 image_subsample=None,
 border_width=None,
 tooltip=None,
 size=(None, None),
 auto_size_button=None,
 button_color=None,
 font=None,
 bind_return_key=False,
 disabled=False,
 focus=False,
 pad=None,
 key=None,
 metadata=None)

Parameter Descriptions:

Name Meaning

button_text text in the button

image_filename image filename if there is a button image

image_data in-RAM image to be displayed on button

432/511

image_size size of button image in pixels

image_subsample amount to reduce the size of the image

border_width width of border around element

tooltip (str) text, that will appear when mouse hovers over the element

size (w,h) w=characters-wide, h=rows-high (Default = (None))

auto_size_button True if button size is determined by button text

button_color button color (foreground, background)

font specifies the font family, size, etc

bind_return_key (Default = False)

disabled set disable state for element (Default = False)

focus if focus should be set to this

pad Amount of padding to put around element

key Used with window.FindElement and with return values to uniquely
identify this element

Name Meaning

ReadButton(button_text,
 image_filename=None,
 image_data=None,
 image_size=(None, None),
 image_subsample=None,
 border_width=None,
 tooltip=None,
 size=(None, None),
 auto_size_button=None,
 button_color=None,
 font=None,
 bind_return_key=False,
 disabled=False,
 focus=False,
 pad=None,
 key=None,
 metadata=None)

Parameter Descriptions:

433/511

Name Meaning

button_text text in the button

image_filename image filename if there is a button image

image_data in-RAM image to be displayed on button

image_size size of button image in pixels

image_subsample amount to reduce the size of the image

border_width width of border around element

tooltip (str) text, that will appear when mouse hovers over the element

size (w,h) w=characters-wide, h=rows-high (Default = (None))

auto_size_button True if button size is determined by button text

button_color button color (foreground, background)

font specifies the font family, size, etc

bind_return_key (Default = False)

disabled set disable state for element (Default = False)

focus if focus should be set to this

pad Amount of padding to put around element

key Used with window.FindElement and with return values to uniquely
identify this element

434/511

RealtimeButton(button_text,
 image_filename=None,
 image_data=None,
 image_size=(None, None),
 image_subsample=None,
 border_width=None,
 tooltip=None,
 size=(None, None),
 auto_size_button=None,
 button_color=None,
 font=None,
 disabled=False,
 bind_return_key=False,
 focus=False,
 pad=None,
 key=None,
 metadata=None)

Parameter Descriptions:

Name Meaning

button_text text in the button

image_filename image filename if there is a button image

image_data in-RAM image to be displayed on button

image_size size of button image in pixels

image_subsample amount to reduce the size of the image

border_width width of border around element

tooltip (str) text, that will appear when mouse hovers over the element

size (w,h) w=characters-wide, h=rows-high (Default = (None))

auto_size_button True if button size is determined by button text

button_color button color (foreground, background)

font specifies the font family, size, etc

disabled set disable state for element (Default = False)

bind_return_key (Default = False)

435/511

focus if focus should be set to this

pad Amount of padding to put around element

key Used with window.FindElement and with return values to uniquely
identify this element

Name Meaning

Save(button_text="Save",
 size=(None, None),
 auto_size_button=None,
 button_color=None,
 bind_return_key=True,
 disabled=False,
 tooltip=None,
 font=None,
 focus=False,
 pad=None,
 key=None,
 metadata=None)

Parameter Descriptions:

Name Meaning

button_text text in the button (Default value = 'Save')

size (w,h) w=characters-wide, h=rows-high

auto_size_button True if button size is determined by button text

button_color button color (foreground, background)

bind_return_key (Default = True)

disabled set disable state for element (Default = False)

tooltip (str) text, that will appear when mouse hovers over the element

font specifies the font family, size, etc

focus if focus should be set to this

pad Amount of padding to put around element

436/511

key Used with window.FindElement and with return values to uniquely
identify this element

return (Button)

Name Meaning

SaveAs(button_text="Save As...",
 target=(555666777, -1),
 file_types=(('ALL Files', '*.*'),),
 initial_folder=None,
 disabled=False,
 tooltip=None,
 size=(None, None),
 auto_size_button=None,
 button_color=None,
 change_submits=False,
 enable_events=False,
 font=None,
 pad=None,
 key=None,
 metadata=None)

Parameter Descriptions:

Name Meaning

button_text text in the button (Default value = 'Save As...')

target key or (row,col) target for the button (Default value = (ThisRow, -1))

file_types (Default value = (("ALL Files", ".")))

initial_folder starting path for folders and files

disabled set disable state for element (Default = False)

tooltip (str) text, that will appear when mouse hovers over the element

size (w,h) w=characters-wide, h=rows-high

auto_size_button True if button size is determined by button text

button_color button color (foreground, background)

change_submits If True, pressing Enter key submits window (Default = False)

437/511

enable_events Turns on the element specific events.(Default = False)

font Union[str, Tuple[str, int]] specifies the font family, size, etc

pad Amount of padding to put around element

key Used with window.FindElement and with return values to uniquely
identify this element

return (Button)

Name Meaning

Show a scrolled Popup window containing the user's text that was supplied. Use with as many
items to print as you want, just like a print statement.

ScrolledTextBox(args,
 title=None,
 button_color=None,
 yes_no=False,
 auto_close=False,
 auto_close_duration=None,
 size=(None, None),
 location=(None, None),
 non_blocking=False)

Parameter Descriptions:

Name Meaning

*args (Any) Variable number of items to display

title (str) Title to display in the window.

button_color Tuple[str, str] button color (foreground, background)

yes_no (bool) If True, displays Yes and No buttons instead of Ok

auto_close (bool) if True window will close itself

auto_close_duration Union[int, float] Older versions only accept int. Time in seconds
until window will close

size Tuple[int, int] (w,h) w=characters-wide, h=rows-high

438/511

location Tuple[int, int] Location on the screen to place the upper left
corner of the window

non_blocking (bool) if True the call will immediately return rather than waiting
on user input

return Union[str, None, TIMEOUT_KEY] Returns text of the button that
was pressed. None will be returned if user closed window with X

Name Meaning

Sets the icon which will be used any time a window is created if an icon is not provided when
the window is created.

SetGlobalIcon(icon)

Parameter Descriptions:

Name Meaning

icon Union[bytes, str] Either a Base64 byte string or a
filename

439/511

SetOptions(icon=None,
 button_color=None,
 element_size=(None, None),
 button_element_size=(None, None),
 margins=(None, None),
 element_padding=(None, None),
 auto_size_text=None,
 auto_size_buttons=None,
 font=None,
 border_width=None,
 slider_border_width=None,
 slider_relief=None,
 slider_orientation=None,
 autoclose_time=None,
 message_box_line_width=None,
 progress_meter_border_depth=None,
 progress_meter_style=None,
 progress_meter_relief=None,
 progress_meter_color=None,
 progress_meter_size=None,
 text_justification=None,
 background_color=None,
 element_background_color=None,
 text_element_background_color=None,
 input_elements_background_color=None,
 input_text_color=None,
 scrollbar_color=None,
 text_color=None,
 element_text_color=None,
 debug_win_size=(None, None),
 window_location=(None, None),
 error_button_color=(None, None),
 tooltip_time=None)

Parameter Descriptions:

Name Meaning

icon filename of icon used for taskbar and title bar

button_color button color (foreground, background)

element_size Tuple[int, int] element size (width, height) in
characters

button_element_size Tuple[int, int]

margins tkinter margins around outsize (Default = (None))

440/511

element_padding (Default = (None))

auto_size_text True if size should fit the text length

auto_size_buttons

font specifies the font family, size, etc

border_width width of border around element

slider_border_width

slider_relief

slider_orientation

autoclose_time

message_box_line_width

progress_meter_border_depth

progress_meter_style

progress_meter_relief

progress_meter_color

progress_meter_size Tuple[int, int]

text_justification

background_color color of background

element_background_color

text_element_background_color

input_elements_background_color

input_text_color

scrollbar_color

text_color color of the text

Name Meaning

441/511

element_text_color

debug_win_size Tuple[int, int] (Default = (None))

window_location (Default = (None))

error_button_color (Default = (None))

tooltip_time time in milliseconds to wait before showing a
tooltip. Default is 400ms

Name Meaning

Submit(button_text="Submit",
 size=(None, None),
 auto_size_button=None,
 button_color=None,
 disabled=False,
 bind_return_key=True,
 tooltip=None,
 font=None,
 focus=False,
 pad=None,
 key=None,
 metadata=None)

Parameter Descriptions:

Name Meaning

button_text text in the button (Default value = 'Submit')

size (w,h) w=characters-wide, h=rows-high

auto_size_button True if button size is determined by button text

button_color button color (foreground, background)

disabled set disable state for element (Default = False)

bind_return_key (Default = True)

tooltip (str) text, that will appear when mouse hovers over the element

font specifies the font family, size, etc

focus if focus should be set to this

442/511

pad Amount of padding to put around element

key Used with window.FindElement and with return values to uniquely
identify this element

return (Button)

Name Meaning

Time your code easily.... start the timer.

TimerStart()

Time your code easily.... stop the timer and print the number of ms since the timer start

TimerStop()

Yes(button_text="Yes",
 size=(None, None),
 auto_size_button=None,
 button_color=None,
 disabled=False,
 tooltip=None,
 font=None,
 bind_return_key=True,
 focus=False,
 pad=None,
 key=None,
 metadata=None)

Parameter Descriptions:

Name Meaning

button_text text in the button (Default value = 'Yes')

size (w,h) w=characters-wide, h=rows-high

auto_size_button True if button size is determined by button text

button_color button color (foreground, background)

disabled set disable state for element (Default = False)

tooltip (str) text, that will appear when mouse hovers over the element

font specifies the font family, size, etc

443/511

bind_return_key (Default = True)

focus if focus should be set to this

pad Amount of padding to put around element

key Used with window.FindElement and with return values to uniquely
identify this element

return (Button)

Name Meaning

Change the "color scheme" of all future PySimpleGUI Windows. The scheme are string names
that specify a group of colors. Background colors, text colors, button colors. There are 13
different color settings that are changed at one time using a single call to ChangeLookAndFeel
The look and feel table itself has these indexe into the dictionary LOOK_AND_FEEL_TABLE
SystemDefault Material1 Material2 Reddit Topanga GreenTan Dark LightGreen Dark2 Black
Tan TanBlue DarkTanBlue DarkAmber DarkBlue Reds Green BluePurple Purple BlueMono
GreenMono BrownBlue BrightColors NeutralBlue Kayak SandyBeach TealMono

change_look_and_feel(index, force=False)

Parameter Descriptions:

Name Meaning

index (str) the name of the index into the Look and Feel table

force (bool) if True allows Macs to use the look and feel feature. Otherwise Macs
are blocked due to problems with button colors

easy_print(args,
 size=(None, None),
 end=None,
 sep=None,
 location=(None, None),
 font=None,
 no_titlebar=False,
 no_button=False,
 grab_anywhere=False,
 keep_on_top=False,
 do_not_reroute_stdout=True)

Parameter Descriptions:

444/511

Name Meaning

*args

size Tuple[int, int] (w,h) w=characters-wide, h=rows-high

end

sep

location Location on screen to display

font specifies the font family, size, etc

no_titlebar (Default = False)

no_button (Default = False)

grab_anywhere If True can grab anywhere to move the window (Default =
False)

do_not_reroute_stdout (Default = True)

easy_print_close()

eprint(args,
 size=(None, None),
 end=None,
 sep=None,
 location=(None, None),
 font=None,
 no_titlebar=False,
 no_button=False,
 grab_anywhere=False,
 keep_on_top=False,
 do_not_reroute_stdout=True)

Parameter Descriptions:

Name Meaning

*args

size Tuple[int, int] (w,h) w=characters-wide, h=rows-high

end

445/511

sep

location Location on screen to display

font specifies the font family, size, etc

no_titlebar (Default = False)

no_button (Default = False)

grab_anywhere If True can grab anywhere to move the window (Default =
False)

do_not_reroute_stdout (Default = True)

Name Meaning

Fills a window with values provided in a values dictionary { element_key : new_value }

fill_form_with_values(window, values_dict)

Parameter Descriptions:

Name Meaning

window (Window) The window object to fill

values_dict (Dict[Any:Any]) A dictionary with element keys as key and value is values
parm for Update call

list_of_look_and_feel_values()

The PySimpleGUI "Test Harness". This is meant to be a super-quick test of the Elements.

main()

obj_to_string(obj, extra=" ")

Parameter Descriptions:

Name Meaning

obj

extra (Default value = ' ')

446/511

obj_to_string_single_obj(obj)

Parameter Descriptions:

Name Meaning

obj

one_line_progress_meter(title,
 current_value,
 max_value,
 key,
 args,
 orientation="v",
 bar_color=(None, None),
 button_color=None,
 size=(20, 20),
 border_width=None,
 grab_anywhere=False)

Parameter Descriptions:

Name Meaning

title text to display

current_value current progressbar value

max_value max value of progressbar

key Used with window.FindElement and with return values to uniquely
identify this element

*args stuff to output.

orientation 'horizontal' or 'vertical' ('h' or 'v' work) (Default value = 'vertical')
(Default value = 'v')

bar_color

button_color button color (foreground, background)

size Tuple[int, int] (w,h) w=characters-wide, h=rows-high (Default value =
DEFAULT_PROGRESS_BAR_SIZE)

border_width width of border around element

447/511

grab_anywhere If True can grab anywhere to move the window (Default = False)

Name Meaning

one_line_progress_meter_cancel(key)

Parameter Descriptions:

Name Meaning

key Used with window.FindElement and with return values to uniquely identify
this element

Popup - Display a popup Window with as many parms as you wish to include. This is the GUI
equivalent of the "print" statement. It's also great for "pausing" your program's flow until the
user can read some error messages.

popup(args,
 title=None,
 button_color=None,
 background_color=None,
 text_color=None,
 button_type=0,
 auto_close=False,
 auto_close_duration=None,
 custom_text=(None, None),
 non_blocking=False,
 icon=None,
 line_width=None,
 font=None,
 no_titlebar=False,
 grab_anywhere=False,
 keep_on_top=False,
 location=(None, None))

Parameter Descriptions:

Name Meaning

*args (Any) Variable number of your arguments. Load up the call with
stuff to see!

title (str) Optional title for the window. If none provided, the first arg
will be used instead.

448/511

button_color Tuple[str, str] Color of the buttons shown (text color, button
color)

background_color (str) Window's background color

text_color (str) text color

button_type (enum) NOT USER SET! Determines which pre-defined buttons
will be shown (Default value = POPUP_BUTTONS_OK). There are
many Popup functions and they call Popup, changing this
parameter to get the desired effect.

auto_close (bool) If True the window will automatically close

auto_close_duration (int) time in seconds to keep window open before closing it
automatically

custom_text Union[Tuple[str, str], str] A string or pair of strings that contain
the text to display on the buttons

non_blocking (bool) If True then will immediately return from the function
without waiting for the user's input.

icon Union[str, bytes] icon to display on the window. Same format as
a Window call

line_width (int) Width of lines in characters. Defaults to
MESSAGE_BOX_LINE_WIDTH

font Union[str, tuple(font name, size, modifiers) specifies the font
family, size, etc

no_titlebar (bool) If True will not show the frame around the window and
the titlebar across the top

grab_anywhere (bool) If True can grab anywhere to move the window. If
no_titlebar is True, grab_anywhere should likely be enabled too

location Tuple[int, int] Location on screen to display the top left corner of
window. Defaults to window centered on screen

Name Meaning

449/511

return Union[str, None] Returns text of the button that was pressed.
None will be returned if user closed window with X

Name Meaning

Show animation one frame at a time. This function has its own internal clocking meaning you
can call it at any frequency and the rate the frames of video is shown remains constant.
Maybe your frames update every 30 ms but your event loop is running every 10 ms. You don't
have to worry about delaying, just call it every time through the loop.

popup_animated(image_source,
 message=None,
 background_color=None,
 text_color=None,
 font=None,
 no_titlebar=True,
 grab_anywhere=True,
 keep_on_top=True,
 location=(None, None),
 alpha_channel=None,
 time_between_frames=0,
 transparent_color=None)

Parameter Descriptions:

Name Meaning

image_source Union[str, bytes] Either a filename or a base64 string.

message (str) An optional message to be shown with the animation

background_color (str) color of background

text_color (str) color of the text

font Union[str, tuple) specifies the font family, size, etc

no_titlebar (bool) If True then the titlebar and window frame will not be
shown

grab_anywhere (bool) If True then you can move the window just clicking
anywhere on window, hold and drag

keep_on_top (bool) If True then Window will remain on top of all other
windows currently shownn

450/511

location (int, int) (x,y) location on the screen to place the top left corner
of your window. Default is to center on screen

alpha_channel (float) Window transparency 0 = invisible 1 = completely
visible. Values between are see through

time_between_frames (int) Amount of time in milliseconds between each frame

transparent_color (str) This color will be completely see-through in your window.
Can even click through

Name Meaning

Display a Popup without a titlebar. Enables grab anywhere so you can move it

popup_annoying(args,
 title=None,
 button_type=0,
 button_color=None,
 background_color=None,
 text_color=None,
 auto_close=False,
 auto_close_duration=None,
 non_blocking=False,
 icon=None,
 line_width=None,
 font=None,
 grab_anywhere=True,
 keep_on_top=False,
 location=(None, None))

Parameter Descriptions:

Name Meaning

*args

title

button_type (Default value = POPUP_BUTTONS_OK)

button_color button color (foreground, background)

background_color color of background

text_color color of the text

451/511

auto_close (Default = False)

auto_close_duration

non_blocking (Default = False)

icon Icon to display

line_width Width of lines in characters

font specifies the font family, size, etc

grab_anywhere (Default = True)

location

Name Meaning

Popup that closes itself after some time period

popup_auto_close(args,
 title=None,
 button_type=0,
 button_color=None,
 background_color=None,
 text_color=None,
 auto_close=True,
 auto_close_duration=None,
 non_blocking=False,
 icon=None,
 line_width=None,
 font=None,
 no_titlebar=False,
 grab_anywhere=False,
 keep_on_top=False,
 location=(None, None))

Parameter Descriptions:

Name Meaning

*args

title

button_type (Default value = POPUP_BUTTONS_OK)

452/511

button_color button color (foreground, background)

background_color color of background

text_color color of the text

auto_close (Default = True)

auto_close_duration

non_blocking (Default = False)

icon Icon to display

line_width Width of lines in characters

font specifies the font family, size, etc

no_titlebar (Default = False)

grab_anywhere If True can grab anywhere to move the window (Default =
False)

location

Name Meaning

Display Popup with "cancelled" button text

popup_cancel(args,
 title=None,
 button_color=None,
 background_color=None,
 text_color=None,
 auto_close=False,
 auto_close_duration=None,
 non_blocking=False,
 icon=None,
 line_width=None,
 font=None,
 no_titlebar=False,
 grab_anywhere=False,
 keep_on_top=False,
 location=(None, None))

Parameter Descriptions:

453/511

Name Meaning

*args

title

button_color button color (foreground, background)

background_color color of background

text_color color of the text

auto_close (Default = False)

auto_close_duration

non_blocking (Default = False)

icon Icon to display

line_width Width of lines in characters

font specifies the font family, size, etc

no_titlebar (Default = False)

grab_anywhere If True can grab anywhere to move the window (Default =
False)

location

Popup with colored button and 'Error' as button text

popup_error(args,
 title=None,
 button_color=(None, None),
 background_color=None,
 text_color=None,
 auto_close=False,
 auto_close_duration=None,
 non_blocking=False,
 icon=None,
 line_width=None,
 font=None,
 no_titlebar=False,
 grab_anywhere=False,
 keep_on_top=False,
 location=(None, None))

454/511

Parameter Descriptions:

Name Meaning

*args

title

button_color button color (foreground, background)

background_color color of background

text_color color of the text

auto_close (Default = False)

auto_close_duration

non_blocking (Default = False)

icon Icon to display

line_width Width of lines in characters

font specifies the font family, size, etc

no_titlebar (Default = False)

grab_anywhere If True can grab anywhere to move the window (Default =
False)

location (Default = (None))

Display popup window with text entry field and browse button so that a file can be chosen by
user.

455/511

popup_get_file(message,
 title=None,
 default_path="",
 default_extension="",
 save_as=False,
 multiple_files=False,
 file_types=(('ALL Files', '*.*'),),
 no_window=False,
 size=(None, None),
 button_color=None,
 background_color=None,
 text_color=None,
 icon=None,
 font=None,
 no_titlebar=False,
 grab_anywhere=False,
 keep_on_top=False,
 location=(None, None),
 initial_folder=None)

Parameter Descriptions:

Name Meaning

message (str) message displayed to user

title (str) Window title

default_path (str) path to display to user as starting point (filled into the input
field)

default_extension (str) If no extension entered by user, add this to filename (only
used in saveas dialogs)

save_as (bool) if True, the "save as" dialog is shown which will verify before
overwriting

multiple_files (bool) if True, then allows multiple files to be selected that are
returned with ';' between each filename

file_types Tuple[Tuple[str,str]] List of extensions to show using wildcards. All
files (the default) = (("ALL Files", "."),)

no_window (bool) if True, no PySimpleGUI window will be shown. Instead just
the tkinter dialog is shown

size Tuple[int, int] (width, height) of the InputText Element

456/511

button_color Tuple[str, str] Color of the button (text, background)

background_color (str) background color of the entire window

text_color (str) color of the message text

icon Union[bytes, str] filename or base64 string to be used for the
window's icon

font Union[str, Tuple[str, int]] specifies the font family, size, etc

no_titlebar (bool) If True no titlebar will be shown

grab_anywhere (bool) If True can click and drag anywhere in the window to move
the window

keep_on_top (bool) If True the window will remain above all current windows

location Tuyple[int, int] (x,y) Location on screen to display the upper left
corner of window

initial_folder (str) location in filesystem to begin browsing

return Union[str, None] string representing the file(s) chosen, None if
cancelled or window closed with X

Name Meaning

Display popup with text entry field and browse button so that a folder can be chosen.

popup_get_folder(message,
 title=None,
 default_path="",
 no_window=False,
 size=(None, None),
 button_color=None,
 background_color=None,
 text_color=None,
 icon=None,
 font=None,
 no_titlebar=False,
 grab_anywhere=False,
 keep_on_top=False,
 location=(None, None),
 initial_folder=None)

Parameter Descriptions:
457/511

Name Meaning

message (str) message displayed to user

title (str) Window title

default_path (str) path to display to user as starting point (filled into the input
field)

no_window (bool) if True, no PySimpleGUI window will be shown. Instead just
the tkinter dialog is shown

size Tuple[int, int] (width, height) of the InputText Element

button_color Tuple[str, str] Color of the button (text, background)

background_color (str) background color of the entire window

text_color (str) color of the message text

icon Union[bytes, str] filename or base64 string to be used for the
window's icon

font Union[str, Tuple[str, int]] specifies the font family, size, etc

no_titlebar (bool) If True no titlebar will be shown

grab_anywhere (bool) If True can click and drag anywhere in the window to move
the window

keep_on_top (bool) If True the window will remain above all current windows

location Tuyple[int, int] (x,y) Location on screen to display the upper left
corner of window

initial_folder (str) location in filesystem to begin browsing

return Union[str, None] string representing the path chosen, None if
cancelled or window closed with X

Display Popup with text entry field. Returns the text entered or None if closed / cancelled

458/511

popup_get_text(message,
 title=None,
 default_text="",
 password_char="",
 size=(None, None),
 button_color=None,
 background_color=None,
 text_color=None,
 icon=None,
 font=None,
 no_titlebar=False,
 grab_anywhere=False,
 keep_on_top=False,
 location=(None, None))

Parameter Descriptions:

Name Meaning

message (str) message displayed to user

title (str) Window title

default_text (str) default value to put into input area

password_char (str) character to be shown instead of actually typed characters

size Tuple[int, int] (width, height) of the InputText Element

button_color Tuple[str, str] Color of the button (text, background)

background_color (str) background color of the entire window

text_color (str) color of the message text

icon Union[bytes, str] filename or base64 string to be used for the
window's icon

font Union[str, Tuple[str, int]] specifies the font family, size, etc

no_titlebar (bool) If True no titlebar will be shown

grab_anywhere (bool) If True can click and drag anywhere in the window to move
the window

keep_on_top (bool) If True the window will remain above all current windows

459/511

location Tuyple[int, int] (x,y) Location on screen to display the upper left
corner of window

return Union[str, None] Text entered or None if window was closed or
cancel button clicked

Name Meaning

Display a Popup without a titlebar. Enables grab anywhere so you can move it

popup_no_border(args,
 title=None,
 button_type=0,
 button_color=None,
 background_color=None,
 text_color=None,
 auto_close=False,
 auto_close_duration=None,
 non_blocking=False,
 icon=None,
 line_width=None,
 font=None,
 grab_anywhere=True,
 keep_on_top=False,
 location=(None, None))

Parameter Descriptions:

Name Meaning

*args

title

button_type (Default value = POPUP_BUTTONS_OK)

button_color button color (foreground, background)

background_color color of background

text_color color of the text

auto_close (Default = False)

auto_close_duration

460/511

non_blocking (Default = False)

icon Icon to display

line_width Width of lines in characters

font specifies the font family, size, etc

grab_anywhere (Default = True)

location

Name Meaning

Show a Popup but without any buttons

popup_no_buttons(args,
 title=None,
 button_color=None,
 background_color=None,
 text_color=None,
 auto_close=False,
 auto_close_duration=None,
 non_blocking=False,
 icon=None,
 line_width=None,
 font=None,
 no_titlebar=False,
 grab_anywhere=False,
 keep_on_top=False,
 location=(None, None))

Parameter Descriptions:

Name Meaning

*args

title

button_color button color (foreground, background)

background_color color of background

text_color color of the text

auto_close (Default = False)

461/511

auto_close_duration

non_blocking (Default = False)

icon Icon to display

line_width Width of lines in characters

font specifies the font family, size, etc

no_titlebar (Default = False)

grab_anywhere If True can grab anywhere to move the window (Default =
False)

location

Name Meaning

Display a Popup without a titlebar. Enables grab anywhere so you can move it

popup_no_frame(args,
 title=None,
 button_type=0,
 button_color=None,
 background_color=None,
 text_color=None,
 auto_close=False,
 auto_close_duration=None,
 non_blocking=False,
 icon=None,
 line_width=None,
 font=None,
 grab_anywhere=True,
 keep_on_top=False,
 location=(None, None))

Parameter Descriptions:

Name Meaning

*args

title

button_type (Default value = POPUP_BUTTONS_OK)

462/511

button_color button color (foreground, background)

background_color color of background

text_color color of the text

auto_close (Default = False)

auto_close_duration

non_blocking (Default = False)

icon Icon to display

line_width Width of lines in characters

font specifies the font family, size, etc

grab_anywhere (Default = True)

location

Name Meaning

Display a Popup without a titlebar. Enables grab anywhere so you can move it

popup_no_titlebar(args,
 title=None,
 button_type=0,
 button_color=None,
 background_color=None,
 text_color=None,
 auto_close=False,
 auto_close_duration=None,
 non_blocking=False,
 icon=None,
 line_width=None,
 font=None,
 grab_anywhere=True,
 keep_on_top=False,
 location=(None, None))

Parameter Descriptions:

Name Meaning

*args

463/511

title

button_type (Default value = POPUP_BUTTONS_OK)

button_color button color (foreground, background)

background_color color of background

text_color color of the text

auto_close (Default = False)

auto_close_duration

non_blocking (Default = False)

icon Icon to display

line_width Width of lines in characters

font specifies the font family, size, etc

grab_anywhere (Default = True)

location

Name Meaning

Show Popup window and immediately return (does not block)

popup_no_wait(args,
 title=None,
 button_type=0,
 button_color=None,
 background_color=None,
 text_color=None,
 auto_close=False,
 auto_close_duration=None,
 non_blocking=True,
 icon=None,
 line_width=None,
 font=None,
 no_titlebar=False,
 grab_anywhere=False,
 keep_on_top=False,
 location=(None, None))

Parameter Descriptions:

464/511

Name Meaning

*args

title

button_type (Default value = POPUP_BUTTONS_OK)

button_color button color (foreground, background)

background_color color of background

text_color color of the text

auto_close (Default = False)

auto_close_duration

non_blocking (Default = True)

icon Icon to display

line_width Width of lines in characters

font specifies the font family, size, etc

no_titlebar (Default = False)

grab_anywhere If True can grab anywhere to move the window (Default =
False)

location

Show Popup window and immediately return (does not block)

465/511

popup_non_blocking(args,
 title=None,
 button_type=0,
 button_color=None,
 background_color=None,
 text_color=None,
 auto_close=False,
 auto_close_duration=None,
 non_blocking=True,
 icon=None,
 line_width=None,
 font=None,
 no_titlebar=False,
 grab_anywhere=False,
 keep_on_top=False,
 location=(None, None))

Parameter Descriptions:

Name Meaning

*args

title

button_type (Default value = POPUP_BUTTONS_OK)

button_color button color (foreground, background)

background_color color of background

text_color color of the text

auto_close (Default = False)

auto_close_duration

non_blocking (Default = True)

icon Icon to display

line_width Width of lines in characters

font specifies the font family, size, etc

no_titlebar (Default = False)

466/511

grab_anywhere If True can grab anywhere to move the window (Default =
False)

location

Name Meaning

Display Popup with OK button only

popup_ok(args,
 title=None,
 button_color=None,
 background_color=None,
 text_color=None,
 auto_close=False,
 auto_close_duration=None,
 non_blocking=False,
 icon=None,
 line_width=None,
 font=None,
 no_titlebar=False,
 grab_anywhere=False,
 keep_on_top=False,
 location=(None, None))

Parameter Descriptions:

Name Meaning

*args

title

button_color button color (foreground, background)

background_color color of background

text_color color of the text

auto_close (Default = False)

auto_close_duration

non_blocking (Default = False)

icon Icon to display

467/511

line_width Width of lines in characters

font specifies the font family, size, etc

no_titlebar (Default = False)

grab_anywhere If True can grab anywhere to move the window (Default =
False)

location

Name Meaning

Show Popup box that doesn't block and closes itself

popup_quick(args,
 title=None,
 button_type=0,
 button_color=None,
 background_color=None,
 text_color=None,
 auto_close=True,
 auto_close_duration=2,
 non_blocking=True,
 icon=None,
 line_width=None,
 font=None,
 no_titlebar=False,
 grab_anywhere=False,
 keep_on_top=False,
 location=(None, None))

Parameter Descriptions:

Name Meaning

*args

title

button_type (Default value = POPUP_BUTTONS_OK)

button_color button color (foreground, background)

background_color color of background

text_color color of the text

468/511

auto_close (Default = True)

auto_close_duration (Default value = 2)

non_blocking (Default = True)

icon Icon to display

line_width Width of lines in characters

font specifies the font family, size, etc

no_titlebar (Default = False)

grab_anywhere If True can grab anywhere to move the window (Default =
False)

location

Name Meaning

Show Popup window with no titlebar, doesn't block, and auto closes itself.

popup_quick_message(args,
 title=None,
 button_type=5,
 button_color=None,
 background_color=None,
 text_color=None,
 auto_close=True,
 auto_close_duration=2,
 non_blocking=True,
 icon=None,
 line_width=None,
 font=None,
 no_titlebar=True,
 grab_anywhere=False,
 keep_on_top=False,
 location=(None, None))

Parameter Descriptions:

Name Meaning

*args

title

469/511

button_type (Default value = POPUP_BUTTONS_NO_BUTTONS)

button_color button color (foreground, background)

background_color color of background

text_color color of the text

auto_close (Default = True)

auto_close_duration (Default value = 2)

non_blocking (Default = True)

icon Icon to display

line_width Width of lines in characters

font specifies the font family, size, etc

no_titlebar (Default = True)

grab_anywhere If True can grab anywhere to move the window (Default =
False)

location

Name Meaning

Show a scrolled Popup window containing the user's text that was supplied. Use with as many
items to print as you want, just like a print statement.

popup_scrolled(args,
 title=None,
 button_color=None,
 yes_no=False,
 auto_close=False,
 auto_close_duration=None,
 size=(None, None),
 location=(None, None),
 non_blocking=False)

Parameter Descriptions:

Name Meaning

*args (Any) Variable number of items to display
470/511

title (str) Title to display in the window.

button_color Tuple[str, str] button color (foreground, background)

yes_no (bool) If True, displays Yes and No buttons instead of Ok

auto_close (bool) if True window will close itself

auto_close_duration Union[int, float] Older versions only accept int. Time in seconds
until window will close

size Tuple[int, int] (w,h) w=characters-wide, h=rows-high

location Tuple[int, int] Location on the screen to place the upper left
corner of the window

non_blocking (bool) if True the call will immediately return rather than waiting
on user input

return Union[str, None, TIMEOUT_KEY] Returns text of the button that
was pressed. None will be returned if user closed window with X

Name Meaning

Popup that closes itself after some time period

popup_timed(args,
 title=None,
 button_type=0,
 button_color=None,
 background_color=None,
 text_color=None,
 auto_close=True,
 auto_close_duration=None,
 non_blocking=False,
 icon=None,
 line_width=None,
 font=None,
 no_titlebar=False,
 grab_anywhere=False,
 keep_on_top=False,
 location=(None, None))

Parameter Descriptions:

471/511

Name Meaning

*args

title

button_type (Default value = POPUP_BUTTONS_OK)

button_color button color (foreground, background)

background_color color of background

text_color color of the text

auto_close (Default = True)

auto_close_duration

non_blocking (Default = False)

icon Icon to display

line_width Width of lines in characters

font specifies the font family, size, etc

no_titlebar (Default = False)

grab_anywhere If True can grab anywhere to move the window (Default =
False)

location

Display Popup with Yes and No buttons

472/511

popup_yes_no(args,
 title=None,
 button_color=None,
 background_color=None,
 text_color=None,
 auto_close=False,
 auto_close_duration=None,
 non_blocking=False,
 icon=None,
 line_width=None,
 font=None,
 no_titlebar=False,
 grab_anywhere=False,
 keep_on_top=False,
 location=(None, None))

Parameter Descriptions:

Name Meaning

*args

title

button_color button color (foreground, background)

background_color color of background

text_color color of the text

auto_close (Default = False)

auto_close_duration

non_blocking (Default = False)

icon Icon to display

line_width Width of lines in characters

font specifies the font family, size, etc

no_titlebar (Default = False)

grab_anywhere If True can grab anywhere to move the window (Default =
False)

location Location on screen to display

473/511

return Union["Yes", "No", None]

Name Meaning

quit(button_text="Quit",
 size=(None, None),
 auto_size_button=None,
 button_color=None,
 disabled=False,
 tooltip=None,
 font=None,
 bind_return_key=False,
 focus=False,
 pad=None,
 key=None,
 metadata=None)

Parameter Descriptions:

Name Meaning

button_text text in the button (Default value = 'Quit')

size (w,h) w=characters-wide, h=rows-high

auto_size_button True if button size is determined by button text

button_color button color (foreground, background)

disabled set disable state for element (Default = False)

tooltip (str) text, that will appear when mouse hovers over the element

font specifies the font family, size, etc

bind_return_key (Default = False)

focus if focus should be set to this

pad Amount of padding to put around element

key Used with window.FindElement and with return values to uniquely
identify this element

return (Button)

474/511

Sets the icon which will be used any time a window is created if an icon is not provided when
the window is created.

set_global_icon(icon)

Parameter Descriptions:

Name Meaning

icon Union[bytes, str] Either a Base64 byte string or a
filename

set_options(icon=None,
 button_color=None,
 element_size=(None, None),
 button_element_size=(None, None),
 margins=(None, None),
 element_padding=(None, None),
 auto_size_text=None,
 auto_size_buttons=None,
 font=None,
 border_width=None,
 slider_border_width=None,
 slider_relief=None,
 slider_orientation=None,
 autoclose_time=None,
 message_box_line_width=None,
 progress_meter_border_depth=None,
 progress_meter_style=None,
 progress_meter_relief=None,
 progress_meter_color=None,
 progress_meter_size=None,
 text_justification=None,
 background_color=None,
 element_background_color=None,
 text_element_background_color=None,
 input_elements_background_color=None,
 input_text_color=None,
 scrollbar_color=None,
 text_color=None,
 element_text_color=None,
 debug_win_size=(None, None),
 window_location=(None, None),
 error_button_color=(None, None),
 tooltip_time=None)

Parameter Descriptions:

475/511

Name Meaning

icon filename of icon used for taskbar and title bar

button_color button color (foreground, background)

element_size Tuple[int, int] element size (width, height) in
characters

button_element_size Tuple[int, int]

margins tkinter margins around outsize (Default = (None))

element_padding (Default = (None))

auto_size_text True if size should fit the text length

auto_size_buttons

font specifies the font family, size, etc

border_width width of border around element

slider_border_width

slider_relief

slider_orientation

autoclose_time

message_box_line_width

progress_meter_border_depth

progress_meter_style

progress_meter_relief

progress_meter_color

progress_meter_size Tuple[int, int]

text_justification

background_color color of background

476/511

element_background_color

text_element_background_color

input_elements_background_color

input_text_color

scrollbar_color

text_color color of the text

element_text_color

debug_win_size Tuple[int, int] (Default = (None))

window_location (Default = (None))

error_button_color (Default = (None))

tooltip_time time in milliseconds to wait before showing a
tooltip. Default is 400ms

Name Meaning

sgprint(args,
 size=(None, None),
 end=None,
 sep=None,
 location=(None, None),
 font=None,
 no_titlebar=False,
 no_button=False,
 grab_anywhere=False,
 keep_on_top=False,
 do_not_reroute_stdout=True)

Parameter Descriptions:

Name Meaning

*args

size Tuple[int, int] (w,h) w=characters-wide, h=rows-high

end

477/511

sep

location Location on screen to display

font specifies the font family, size, etc

no_titlebar (Default = False)

no_button (Default = False)

grab_anywhere If True can grab anywhere to move the window (Default =
False)

do_not_reroute_stdout (Default = True)

Name Meaning

sgprint_close()

Shows the smaller "popout" window. Default location is the upper right corner of your screen

show_debugger_popout_window(location=(None, None), args)

Parameter Descriptions:

Name Meaning

location Tuple[int, int] Locations (x,y) on the screen to place upper left corner of the
window

*args Not used

Shows the large main debugger window

show_debugger_window(location=(None, None), args)

Parameter Descriptions:

Name Meaning

location Tuple[int, int] Locations (x,y) on the screen to place upper left corner of the
window

*args Not used

478/511

Show a scrolled Popup window containing the user's text that was supplied. Use with as many
items to print as you want, just like a print statement.

sprint(args,
 title=None,
 button_color=None,
 yes_no=False,
 auto_close=False,
 auto_close_duration=None,
 size=(None, None),
 location=(None, None),
 non_blocking=False)

Parameter Descriptions:

Name Meaning

*args (Any) Variable number of items to display

title (str) Title to display in the window.

button_color Tuple[str, str] button color (foreground, background)

yes_no (bool) If True, displays Yes and No buttons instead of Ok

auto_close (bool) if True window will close itself

auto_close_duration Union[int, float] Older versions only accept int. Time in seconds
until window will close

size Tuple[int, int] (w,h) w=characters-wide, h=rows-high

location Tuple[int, int] Location on the screen to place the upper left
corner of the window

non_blocking (bool) if True the call will immediately return rather than waiting
on user input

return Union[str, None, TIMEOUT_KEY] Returns text of the button that
was pressed. None will be returned if user closed window with X

The PySimpleGUI "Test Harness". This is meant to be a super-quick test of the Elements.

test()

479/511

"Demo Programs" Applications
There are too many to list!!

There are over 170 sample programs to give you a jump start.

These programs are an integral part of the overall PySimpleGUI documentation and learning
system. They will give you a headstart in a way you can learn from and understand. They also
show you integration techiques to other packages that have been figured out for you.

You will find Demo Programs located in a subfolder named "Demo Programs" under the top
level and each of the PySimpleGUI ports on GitHub.

Demo programs for plain PySimpleGUI (tkinter)
https://github.com/PySimpleGUI/PySimpleGUI/tree/master/DemoPrograms

Demo programs for PySimpleGUIQt:
https://github.com/PySimpleGUI/PySimpleGUI/tree/master/PySimpleGUIQt/Demo%20Programs

Demo programs for PySimpleGUIWx:
https://github.com/PySimpleGUI/PySimpleGUI/tree/master/PySimpleGUIWx/Demo%20Programs

Demo programs for PySimpleGUIWeb:
https://github.com/PySimpleGUI/PySimpleGUI/tree/master/PySimpleGUIWeb/Demo%20Programs

There are not many programs under each of the port's folders because the main Demo
Programs should run on all of the other platforms with minimal changes (often only the
import statement changes).

Packages Used In Demos
While the core PySimpleGUI code does not utilize any 3rd party packages, some of the demos
do. They add a GUI to a few popular packages. These packages include: * Chatterbot * Mido *
Matplotlib * PyMuPDF * OpenCV * pymunk * psutil * pygame * Forecastio

Creating a Windows .EXE File
It's possible to create a single .EXE file that can be distributed to Windows users. There is no
requirement to install the Python interpreter on the PC you wish to run it on. Everything it
needs is in the one EXE file, assuming you're running a somewhat up to date version of
Windows.

Installation of the packages, you'll need to install PySimpleGUI and PyInstaller (you need to
install only once)

480/511

https://github.com/gunthercox/ChatterBot
https://github.com/olemb/mido
https://matplotlib.org/
https://github.com/rk700/PyMuPDF

pip install PySimpleGUI
pip install PyInstaller

To create your EXE file from your program that uses PySimpleGUI, my_program.py , enter this
command in your Windows command prompt:

pyinstaller -wF my_program.py

You will be left with a single file, my_program.exe , located in a folder named dist under the
folder where you executed the pyinstaller command.

That's all... Run your my_program.exe file on the Windows machine of your choosing.

"It's just that easy."

(famous last words that screw up just about anything being referenced)

Your EXE file should run without creating a "shell window". Only the GUI window should show
up on your taskbar.

If you get a crash with something like:

ValueError: script '.......\src\tkinter' not found

Then try adding --hidden-import tkinter to your command

Creating a Mac App File
There are reports that PyInstaller can be used to create App files. It's not been officially tested.

Run this command on your Mac

pyinstaller --onefile --add-binary='/System/Library/Frameworks/Tk.framework/Tk':'tk' --add-
binary='/System/Library/Frameworks/Tcl.framework/Tcl':'tcl' your_program.py

This info was located on Reddit with the source traced back to:
https://github.com/pyinstaller/pyinstaller/issues/1350

Debug Output
Be sure and check out the EasyPrint (Print) function described in the high-level API section.
Leave your code the way it is, route your stdout and stderror to a scrolling window.

For a fun time, add these lines to the top of your script

481/511

 import PySimpleGUI as sg
 print = sg.Print

This will turn all of your print statements into prints that display in a window on your screen
rather than to the terminal.

Look and Feel
You can change defaults and colors of a large number of things in PySimpleGUI quite easily.

ChangleLookAndFeel
Want a quick way of making your windows look a LOT better? Try calling ChangeLookAndFeel .
It will, in a single call, set various color values to widgets, background, text, etc.

Or dial in the look and feel (and a whole lot more) that you like with the SetOptions function.
You can change all of the defaults in one function call. One line of code to customize the entire
GUI.

 sg.ChangeLookAndFeel('GreenTan')

Valid look and feel values are currently:

SystemDefault
Reddit
Topanga
GreenTan
Dark
LightGreen
Dark2
Black
Tan
TanBlue
DarkTanBlue
DarkAmber
DarkBlue
Reds
Green
BluePurple
Purple
BlueMono
GreenMono
BrownBlue
BrightColors
NeutralBlue
Kayak
SandyBeach
TealMono

482/511

The way this call actually works is that it calls SetOptions with a LOT of color settings. Here is
the actual call that's made. As you can see lots of stuff is defined for you.

SetOptions(background_color=colors['BACKGROUND'],
 text_element_background_color=colors['BACKGROUND'],
 element_background_color=colors['BACKGROUND'],
 text_color=colors['TEXT'],
 input_elements_background_color=colors['INPUT'],
 button_color=colors['BUTTON'],
 progress_meter_color=colors['PROGRESS'],
 border_width=colors['BORDER'],
 slider_border_width=colors['SLIDER_DEPTH'],
 progress_meter_border_depth=colors['PROGRESS_DEPTH'],
 scrollbar_color=(colors['SCROLL']),
 element_text_color=colors['TEXT'],
 input_text_color=colors['TEXT_INPUT'])

To see the latest list of color choices you can call ListOfLookAndFeelValues()

You can also combine the ChangeLookAndFeel function with the SetOptions function to
quickly modify one of the canned color schemes. Maybe you like the colors but was more
depth to your bezels. You can dial in exactly what you want.

ObjToString Ever wanted to easily display an objects contents easily? Use ObjToString to get a
nicely formatted recursive walk of your objects. This statement:

print(sg.ObjToSting(x))

And this was the output

<class '__main__.X'>
 abc = abc
 attr12 = 12
 c = <class '__main__.C'>
 b = <class '__main__.B'>
 a = <class '__main__.A'>
 attr1 = 1
 attr2 = 2
 attr3 = three
 attr10 = 10
 attrx = x

You'll quickly wonder how you ever coded without it.

Known Issues
Well, there are a few quirks, and problems of course. Check the GitHub Issues database for a
list of them.

483/511

https://github.com/PySimpleGUI/PySimpleGUI/issues

As previously mentioned this is also where you should post all problems and enhancements.

MACS + tkinter = SUCKS
Not sure why, but for over a year and a half, setting the color of buttons does not work on
Macs. There have been numerous other problems. Checking the Issues database is the best
place to see what they are. If there was a magic wand it would have been used long ago to fix
these problems, but there does not appear to be a magic fix.

This was already mentioned at the top of this document but want to make sure it's covered as
a "known issue"

Multiple threads
While not an "issue" this is a stern warning

Do not attempt to call PySimpleGUI from multiple threads! It's
tkinter based and tkinter has issues with multiple threads

Tkinter also wants to be the MAIN thread in your code. So, if you have to run multiple threads,
make sure the GUI is the main thread.

Other than that, feel free to use threads with PySimpleGUI on all of the ports. You'll find a
good example for how to run "long running tasks" in your event loop by looking at the demo
program: Demo_Multithreaded_Long_Tasks.py

Contributing

Core Code
Core code changes/pull requests are not being accepted at this time.

Demos
You're welcome to share a PySimpleGUI program you've written that you think fits the model
of a PySimpleGUI Demo Program.

GitHub Repos
If you've created a GitHub for your project that uses PySimpleGUI then please submit it to be
included in this document or on the PySimpleGUI GitHub site. Also, you'll find a lot more
people will look at your code, explore your repo if you have posted screen shots in your

484/511

readme. People love success stories and showing your GUI's screen shows you've been
successful. Everyone wins!

Versions

Version Description

1.0.9 July 10, 2018 - Initial Release

1.0.21 July 13, 2018 - Readme updates

2.0.0 July 16, 2018 - ALL optional parameters renamed from CamelCase to
all_lower_case

2.1.1 July 18, 2018 - Global settings exposed, fixes

2.2.0 July 20, 2018 - Image Elements, Print output

2.3.0 July 23, 2018 - Changed form.Read return codes, Slider Elements, Listbox
element. Renamed some methods but left legacy calls in place for now.

2.4.0 July 24, 2018 - Button images. Fixes so can run on Raspberry Pi

2.5.0 July 26, 2018 - Colors. Listbox scrollbar. tkinter Progress Bar instead of
homegrown.

2.6.0 July 27, 2018 - auto_size_button setting. License changed to LGPL 3+

2.7.0 July 30, 2018 - realtime buttons, window_location default setting

2.8.0 Aug 9, 2018 - New None default option for Checkbox element, text color
option for all elements, return values as a dictionary, setting focus, binding
return key

2.9.0 Aug 16,2018 - Screen flash fix, do_not_clear input field option,
autosize_text defaults to True now, return values as ordered dict,

removed text target from progress bar, rework of return values and initial
return values, removed legacy Form.Refresh() method (replaced by
Form.ReadNonBlockingForm()), COLUMN elements!!, colored text defaults

485/511

2.10.0 Aug 25, 2018 - Keyboard & Mouse features (Return individual keys as if
buttons, return mouse scroll-wheel as button, bind return-key to button,
control over keyboard focus), SaveAs Button, Update & Get methods for
InputText, Update for Listbox, Update & Get for Checkbox, Get for Multiline,
Color options for Text Element Update, Progess bar Update can change max
value, Update for Button to change text & colors, Update for Image
Element, Update for Slider, Form level text justification, Turn off default
focus, scroll bar for Listboxes, Images can be from filename or from in-RAM,
Update for Image). Fixes - text wrapping in buttons, msg box, removed
slider borders entirely and others

2.11.0 Aug 29, 2018 - Lots of little changes that are needed for the demo programs
to work. Buttons have their own default element size, fix for Mac default
button color, padding support for all elements, option to immediately
return if list box gets selected, FilesBrowse button, Canvas Element, Frame
Element, Slider resolution option, Form.Refresh method, better text
wrapping, 'SystemDefault' look and feel settin

2.20.0 Sept 4, 2018 - Some sizable features this time around of interest to
advanced users. Renaming of the MsgBox functions to Popup. Renaming
GetFile, etc, to PopupGetFile. High-level windowing capabilities start with
Popup, PopupNoWait/PopupNonblocking, PopupNoButtons, default icon,
change_submits option for Listbox/Combobox/Slider/Spin/, New
OptionMenu element, updating elements after shown, system defaul color
option for progress bars, new button type (Dummy Button) that only closes
a window, SCROLLABLE Columns!! (yea, playing in the Big League now),
LayoutAndShow function removed, form.Fill - bulk updates to forms,
FindElement - find element based on key value (ALL elements have keys
now), no longer use grid packing for row elements (a potentially huge
change), scrolled text box sizing changed, new look and feel themes (Dark,
Dark2, Black, Tan, TanBlue, DarkTanBlue, DarkAmber, DarkBlue, Reds,
Green)

2.30.0 Sept 6, 2018 - Calendar Chooser (button), borderless windows, load/save
form to disk

3.0.0 Sept 7, 2018 - The "fix for poor choice of 2.x numbers" release. Color
Chooser (button), "grab anywhere" windows are on by default, disable
combo boxes, Input Element text justification (last part needed for 'tables'),
Image Element changes to support OpenCV?, PopupGetFile and
PopupGetFolder have better no_window option

Version Description

486/511

3.01.01 Sept 10, 2018 - Menus! (sort of a big deal)

3.01.02 Step 11, 2018 - All Element.Update functions have a disabled parameter so
they can be disabled. Renamed some parameters in Update function (sorry
if I broke your code), fix for bug in Image.Update. Wasn't setting size
correctly, changed grab_anywhere logic again,added grab anywhere option
to PupupGetText (assumes disabled)

3.02.00 Sept 14, 2018 - New Table Element (Beta release), MsgBox removed entirely,
font setting for InputText Element, packing change risky change that
allows some Elements to be resized,removed command parameter from
Menu Element, new function names for ReadNonBlocking (Finalize,
PreRead), change to text element autosizing and wrapping (yet again), lots
of parameter additions to Popup functions (colors, etc).

3.03.00 New feature - One Line Progress Meters, new display_row_numbers for
Table Element, fixed bug in EasyProgresssMeters (function will soon go
away), OneLine and Easy progress meters set to grab anywhere but can be
turned off.

03,04.00 Sept 18, 2018 - New features - Graph Element, Frame Element, more
settings exposed to Popup calls. See notes below for more.

03.04.01 Sept 18, 2018 - See release notes

03.05.00 Sept 20, 2018 - See release notes

03.05.01 Sept 22, 2018 - See release notes

03.05.02 Sept 23, 2018 - See release notes

03.06.00 Sept 23, 2018 - Goodbye FlexForm, hello Window

03.08.00 Sept 25, 2018 - Tab and TabGroup Elements\

01.00.00
for 2.7

Sept 25, 2018 - First release for 2.7

03.08.04 Sept 30, 2018 - See release notes

03.09.00 Oct 1, 2018

Version Description

487/511

2.7
01.01.00

Oct 1, 2018

2.7
01.01.02

Oct 8, 2018

03.09.01 Oct 8, 2018

3.9.3 &
1.1.3

Oct 11, 2018

3.9.4 &
1.1.4

Oct 16, 2018

3.10.1 &
1.2.1

Oct 20, 2018

3.10.3 &
1.2.3

Oct 23, 2018

3.11.0 &
1.11.0

Oct 28, 2018

3.12.0 &
1.12.0

Oct 28, 2018

3.13.0 &
1.13.0

Oct 29, 2018

3.14.0 &
1.14.0

Nov 2, 2018

3.15.0 &
1.15.0

Nov 20, 2018

3.16.0 &
1.16.0

Nov 26, 2018

3.17.0 &
1.17.0

Dec 1, 2018

Version Description

Release Notes
488/511

2.3 - Sliders, Listbox's and Image elements (oh my!)

If using Progress Meters, avoid cancelling them when you have another window open. It could
lead to future windows being blank. It's being worked on.

New debug printing capability. sg.Print

2.5 Discovered issue with scroll bar on Output elements. The bar will match size of ROW not
the size of the element. Normally you never notice this due to where on a form the Output
element goes.

Listboxes are still without scrollwheels. The mouse can drag to see more items. The mouse
scrollwheel will also scroll the list and will page up and page down keys.

2.7 Is the "feature complete" release. Pretty much all features are done and in the code

2.8 More text color controls. The caller has more control over things like the focus and what
buttons should be clicked when enter key is pressed. Return values as a dictionary! (NICE
addition)

2.9 COLUMNS! This is the biggest feature and had the biggest impact on the code base. It was
a difficult feature to add, but it was worth it. Can now make even more layouts. Almost any
layout is possible with this addition.

.................. insert releases 2.9 to 2.30

3.0 We've come a long way baby! Time for a major revision bump. One reason is that the
numbers started to confuse people the latest release was 2.30, but some people read it as 2.3
and thought it went backwards. I kinda messed up the 2.x series of numbers, so why not start
with a clean slate. A lot has happened anyway so it's well earned.

One change that will set PySimpleGUI apart is the parlor trick of being able to move the
window by clicking on it anywhere. This is turned on by default. It's not a common way to
interact with windows. Normally you have to move using the titlebar. Not so with
PySimpleGUI. Now you can drag using any part of the window. You will want to turn off for
windows with sliders. This feature is enabled in the Window call.

Related to the Grab Anywhere feature is the no_titlebar option, again found in the call to
Window. Your window will be a spiffy, borderless window. It's a really interesting effect. Slight
problem is that you do not have an icon on the taskbar with these types of windows, so if you
don't supply a button to close the window, there's no way to close it other than task manager.

3.0.2 Still making changes to Update methods with many more ahead in the future. Continue
to mess with grab anywhere option. Needed to disable in more places such as the
PopupGetText function. Any time these is text input on a form, you generally want to turn off
the grab anywhere feature.

489/511

3.2.0

Biggest change was the addition of the Table Element. Trying to make changes so that form
resizing is a possibility but unknown if will work in the long run. Removed all MsgBox, Get*
functions and replaced with Popup functions. Popups had multiple new parameters added to
change the look and feel of a popup.

3.3.0

OneLineProgressMeter function added which gives you not only a one-line solution to progress
meters, but it also gives you the ability to have more than 1 running at the same time,
something not possible with the EasyProgressMeterCall

3.4.0

Frame - New Element - a labelled frame for grouping elements. Similar to Column
Graph (like a Canvas element except uses the caller's coordinate system rather than
tkinter's).
initial_folder - sets starting folder for browsing type buttons (browse for file/folder).
Buttons return key value rather than button text If a key is specified, *
OneLineProgressMeter! Replaced EasyProgressMeter (sorry folks that's the way progress
works sometimes)
Popup - changed ALL of the Popup calls to provide many more customization settings

Popup
PopupGetFolder
PopupGetFile
PopupGetText
Popup
PopupNoButtons
PopupNonBlocking
PopupNoTitlebar
PopupAutoClose
PopupCancel
PopupOK
PopupOKCancel
PopupYesNo

3.4.1

Button.GetText - Button class method. Returns the current text being shown on a
button.
Menu - Tearoff option. Determines if menus should allow them to be torn off
Help - Shorcut button. Like Submit, cancel, etc
ReadButton - shortcut for ReadFormButton

490/511

3.5.0

Tool Tips for all elements
Clickable text
Text Element relief setting
Keys as targets for buttons
New names for buttons:
Button = SimpleButton
RButton = ReadButton = ReadFormButton
Double clickable list entries
Auto sizing table widths works now
Feature DELETED - Scaling. Removed from all elements

3.5.1

Bug fix for broken PySimpleGUI if Python version < 3.6 (sorry!)
LOTS of Readme changes

3.5.2

Made Finalize() in a way that it can be chained
Fixed bug in return values from Frame Element contents

3.6.0

Renamed FlexForm to Window
Removed LookAndFeel capability from Mac platform.

3.8.0

Tab and TabGroup Elements - awesome new capabilities

1.0.0 Python 2.7

It's official. There is a 2.7 version of PySimpleGUI!

3.8.2

Exposed TKOut in Output Element
DrawText added to Graph Elements

Removed Window.UpdateElements
Window.grab_anywere defaults to False

3.8.3

491/511

Listbox, Slider, Combobox, Checkbox, Spin, Tab Group - if change_submits is set, will
return the Element's key rather than ''
Added change_submits capability to Checkbox, Tab Group
Combobox - Can set value to an Index into the Values table rather than the Value itself
Warnings added to Drawing routines for Graph element (rather than crashing)
Window - can "force top level" window to be used rather than a normal window. Means
that instead of calling Tk to get a window, will call TopLevel to get the window
Window Disable / Enable - Disables events (button clicks, etc) for a Window. Use this
when you open a second window and want to disable the first window from doing
anything. This will simulate a 'dialog box'
Tab Group returns a value with Window is Read. Return value is the string of the selected
tab
Turned off grab_anywhere for Popups
New parameter, default_extension, for PopupGetFile
Keyboard shortcuts for menu items. Can hold ALT key to select items in men
Removed old-style Tabs - Risky change because it hit fundamental window packing and
creation. Will also break any old code using this style tab (sorry folks this is how progress
happens)

3.8.6

Fix for Menus.
Fixed table colors. Now they work
Fixed returning keys for tabs
Window Hide / UnHide methods
Changed all Popups to remove context manager
Error checking for Graphing objects and for Element Updates

3.9.0 & 1.1.0

The FIRST UNIFIED version of the code!
Python 2.7 got a TON of features . Look back to 1.0 release for the list
Tab locations - Can place Tabs on top, bottom, left, right now instead of only the top

3.9.1 & 1.1.2

Tab features
Themes
Enable / Disable
Tab text colors
Selected tab color
New GetListValues method for Listbox
Can now have multiple progress bars in 1 window

492/511

Fix for closing debug-output window with other windows open
Topanga Look and Feel setting
User can create new look and feel settings / can access the look and feel table
New PopupQuick call. Shows a non-blocking popup window with auto-close
Tree Element partially done (don't use despite it showing up)

3.9.3 & 1.1.3

Disabled setting when creating element for:
Input
Combo
Option Menu
Listbox
Radio
Checkbox
Spinner
Multiline
Buttons
Slider
Doc strings on all Elements updated
Buttons can take image data as well as image files
Button Update can change images
Images can have background color
Table element new num_rows parameter
Table Element new alternating_row_color parameter
Tree Element
Window Disappear / Reappear methods
Popup buttons resized to same size
Exposed look and feel table

3.9.4 & 1.1.4

Parameter order change for Button.Update so that new button ext is at front
New Graph.DrawArc method
Slider tick interval parameter for labeling sliders
Menu tearoff now disabled by default
Tree Data printing simplified and made prettier
Window resizable parameter. Defaults to not resizable
Button images can have text over them now
BUG fix in listbox double-click. First bug fix in months
New Look And Feel capability. List predefined settings using ListOfLookAndFeelValues

3.10.1 & 1.2.1
493/511

Combobox new readonly parameter in init and Update
Better default sizes for Slider
Read of Tables now returns which rows are selected (big damned deal feature)
PARTIAL support of Table.Update with new values (use at your own peril)
Alpha channel setting for Windows
Timeout setting for Window.Read (big damned deal feature)
Icon can be base64 image now in SetIcon call
Window.FindElementWithFocus call
Window.Move allows moving window anywhere on screen
Window.Minimize will minimize to taskbar
Button background color can be set to system default (i.e. not changed)

3.10.2 & 1.2.2

Emergency patch release... going out same day as previous release * The timeout timer for the
new Read with timer wasn't being properly shut down * The Image.Update method appears to
not have been written correctly. It didn't handle base64 images like the other elements that
deal with images (buttons)

3.10.3 & 1.2.3

New element - Vertical Separator
New parameter for InputText - change_submits. If True will cause Read to return when a
button fills in the InputText element
Read with timeout = 0 is same as read non blocking and is the new preferred method
Will return event == None if window closed
New Close method will close all window types
Scrollbars for Tables automatically added (no need for a Column Element)
Table Update method complete
Turned off expand when packing row frame... was accidentally turned on (primary
reason for this release)
Try added to Image Update so won't crash if bad image passed in

3.11.0 & 1.11.0

Syncing up the second digit of the releases so that they stay in sync better. the 2.7
release is built literally from the 3.x code so they really are the same
Reworked Read call... significantly.
Realtime buttons work with timeouts or blocking read
Removed default value parm on Buttons and Button Updates
New Tree Element parm show_expanded. Causes Tree to be shown as fully expanded
Tree Element now returns which rows are selected when Read
New Window method BringToFront

494/511

Shortcut buttons no longer close windows!
Added CloseButton, CButton that closes the windows

3.12.0 & 1.12.0

Changed Button to be the same as ReadButton which means it will no longer close the
window
All shortcut buttons no longer close the window
Updating a table clears selected rows information in return values
Progress meter uses new CloseButton
Popups use new CloseButton

3.13.0 & 1.13.0

Improved multiple window handling of Popups when the X is used to close
Change submits added for:
Multiline
Input Text
Table
Tree
Option to close calendar chooser when date selected
Update for Tree Element
Scroll bars for Trees

3.14.0 & 1.14.0

More windowing changes...
using a hidden root windowing (Tk())
all children are Toplevel() windows

Read only setting for:
Input Text
Multiline

Font setting for InputCombo, Multiline
change_submits setting for Radio Element
SetFocus for multiline, input elements
Default mon, day, year for calendar chooser button
Tree element update, added ability to change a single key
Message parm removed from ReadNonBlocking
Fix for closing windows using X
CurrentLocation method for Windows

495/511

Debug Window options
location
font
no_button
no_titlebar
grab_anywhere
keep_on_top

New Print / EasyPrint options
location
font
no_button
no_titlebar
grab_anywhere
keep_on_top

New popup, PopupQuickMessage
PopupGetFolder, PopupGetFile new initial_folder parm

3.15.0 & 1.15.0

Error checking for InputText.Get method
Text color, background color added to multiline element.Update
Update method for Output Element - gives ability to clear the output
Graph Element - Read returns values if new flages set

Change submits, drag submits
Returns x,y coordinates

Column element new parm vertical_scroll_only
Table element new parm - bind return key - returns if return or double click
New Window parms - size, disable_close
"Better" multiwindow capabilities
Window.Size property
Popups - new title parm, custom_text

title sets the window title
custom_text - single string or tuple string sets text on button(s)

3.16.0 & 1.16.0

Bug fix in PopupScrolled
New Element shortcut function for FindElement
Dummy Stretch Element made for backwards compatibility with Qt
Timer function prints in milliseconds now, was seconds

3.17.0 &1.17.0 2-Dec-2018

496/511

3.17.0 2-Dec-2017 * Tooltip offset now programmable. Set variable
DEFAULT_TOOLTIP_OFFSET. Defaults to (20,-20) * Tooltips are always on top now * Disable
menu items * Menu items can have keys * StatusBar Element (preparing for a real status bar
in Qt) * enable_events parameter added to ALL Elements capable of generating events *
InputText.Update select parameter will select the input text * Listbox.Update - set_to_index
parameter will select a single items * Menus can be updated! * Menus have an entry in the
return values * LayoutAndRead depricated * Multi-window support continues (X detection) *
PopupScrolled now has a location parameter * row_height parameter to Table Element *
Stretch Element (DUMMY) so that can be source code compatible with Qt * ButtonMenu
Element (DUMMY) so can be source code compat with Qt. Will implement eventually

3.18.0 11-Dec-2018
NOTE - Menus are broken on version 2.7. Don't know how long they've been this way. Please
get off legacy Python if that's what you're running.

Default progress bar length changed to shorter
Master window and tracking of num open windows moved from global to Window class
variable
Element visibility setting (when created and when Updating element)
Input text visiblity
Combo visiblity
Combo replaces InputCombo as the primary class name
Option menu visibility
Listbox visiblity
Listbox new SetFocus method
Radio visibility
Checkbox visibility
Spin visiblity
Spin new Get method returns current value
Multiline visiblity
Text visibility
StatusBar visiblity
Output visibility
Button visibility
Button SetFocus
ProgressBar - New Update method (used only for visibility)
Image - clickable images! enable_events parameter
Image visibility
Canvas visibility
Graph visibility
Graph - new DrawImage capability (finally)
Frame visibility

497/511

Tab visibility (may not be fully functional)
TabGroup visibility
Slider visibility
Slider - new disable_number_display parameter
Column visibilty
Menu visibility - Not functional
Table visibility
Table - new num_rows parm for Update - changes number of visible rows
Tree visiblity
Window - New element_padding parameter will get padding for entire window
OneLineProgressMeter - Completely REPLACED the implementation
OneLineProgressMeter - can get reason for the cancellation (cancel button versus X)
EasyProgressMeter - completely removed. Use OneLineProgressMeter instead
Debug window, EasyPrint, Print - debug window will re-open if printed to after being
closed
SetOptions - can change the error button color
Much bigger window created when running PySimpleGUI.py by itself. Meant to help with
regression testing

3.19.2 13-Dec-2018
Warning for Mac's when trying to change button color
New parms for Button.Update - image_size and image_subsample
Buttons - remove highlight when border depth == 0
OneLineProgressMeter - better layout implementation

3.20.0 & 1.20.0 18-Dec-2018
New Pane Element
Graph.DeleteFigure method
disable_minimize - New parameter for Window
Fix for 2.7 menus
Debug Window no longer re-routes stdout by default
Can re-route by specifying in Print / EasyPrint call
New non-blocking for PopupScrolled
Can set title for PopupScrolled window

3.21.0 & 1.21.0 28-Dec-2018
ButtonMenu Element
Embedded base64 default icon
Input Text Right click menu

498/511

Disabled Input Text are now 'readonly' instead of disabled
Listbox right click menu
Multiline right click menu
Text right click menu
Output right click menu
Image right click menu
Canvas right click menu
Graph right click menu
Frame right click menu
Tab, tabgroup right click menu (unsure if works correctly)
Column right click menu
Table right click menu
Tree right click menu
Window level right click menu
Window icon can be filename or bytes (Base64 string)
Window.Maximize method
Attempted to use Styles better with Combobox
Fixed bug blocking setting bar colors in OneLineProgressMeter

3.22.0 PySimpleGUI / 1.22.0 PySimpleGUI27
Added type hints to some portions of the code
Output element can be made invisible
Image sizing and subsample for Button images
Invisibility for ButtonMenusup
Attempt at specifying size of Column elements (limited success)
Table Element
New row_colors parameter
New vertical_scroll_only parameter - NOTE - will have to disable to get horizontal
scrollbars
Tree Element
New row_height parameter
New feature - Icons for tree entries using filename or Base64 images
Fix for bug sending back continuous mouse events
New parameter silence_on_error for FindElement / Element calls
Slider returns float now
Fix for Menus when using Python 2.7
Combobox Styling (again)

3.2.0 PySimpleGUI / 1.23.0 PySimpleGUI27 16-Jan-2019
Animated GIFs!

499/511

Calendar Chooser stays on top of other windows
Fixed bug of no column headings for Tables
Tables now use the font parameter

3.24.0 1.24.0 16-Jan-2019
PopupAnimated - A popup call for showing "loading" type of windows

3.25 & 1.25 20-Feb-2019
Comments :-)
Convert Text to string right away
Caught exceptions when main program shut down with X
Caught exceptions in all of the graphics primitives
Added parameter exportselection=False to Listbox so can use multiple listboxes
OneLineProgressMeter - Can now change the text on every call if desired

3.27.0 PySimpleGUI 31-Mar-2019
Mixup.... 3.26 changes don't appear to have been correctly released so releasing in 3.27 now

do_not_clear now defaults to TRUE!!!
Input Element
Multiline Element
Enable Radio Buttons to be in different containers
Ability to modify Autoscroll setting in Multiline.Update call
PopupGetFolder, PopupGetFile, PopupGetText - title defaults to message if none
provided
PopupAnimated - image_source can be a filename or bytes (base64)
Option Menu can now have values updated

3.28.0 11-Apr-2019 PySimpleGUI
NEW Window Parameter - layout - second parameter. Can pass in layout directly now!
New shortcuts

I = InputText
B = Btn = Butt = Button

Convert button text to string when creating buttons
Buttons are returned now as well as input fields when searching for element with focus

3.29 22-Apr-2019
New method for Graph - RelocateFigure

500/511

Output Element no longer accepts focus

3.32.0 PySimpleGUI 24-May-2019
Rework of ALLL Tooltips. Was always displaying at uttuper left part of element. Not
displays closer to where mouse entered or edited
New Element.Widget base class variable. Brings tkinter into the newer architecture of
user accessibility to underlying GUI Frameworks' widgets
New SetTooltip Element method. Means all Elements gain this method. Can set the
tooltip on the fly now for all elements
Include scroll bar when making visible / invisible Listbox Elements
New Radio Element method - Radio.ResetGroup() sets all elements in the Radio Group
to False* Added borderwidth to Multiline Element
Button.Click() - new method - Generates a button click even as if a user clicked a button

(at the tkinter level)
Made a Graph.Images dictionary to keep track of images being used in a graph. When
graph is deleted, all of the accociated images should be deleted too.'
Added Graph.SetFocus() to give a Graph Element the focus just as you can input
elements
Table new parameter - hide_vertical_scroll if True will hide the table's vertical bars
Window - new parameter - transparent_color . Causes a single color to become
completely transparent such that you see through the window, you can click through the
window. Its like tineows never was there.
The new Window.AllKeysDict = {} has been adopted by all PySimpleGUI ports. It's a new
method of automatically creating missing keys, storing and retrieving keys in general for
a window.
Changed how window.Maximize is implemented previously used the '-fullscreen'
attribute. Now uses the 'zoomed' state
Window gets a new Normal() method to return from Maximize state. Sets
root.state('normal')
Window.Close() now closes the special Window.hidden_master_root window when the
"last" window is closed
Window.SetTransparentColor method added. Same effect as if window was created with

parameter set
An Element's Widget stored in .Widget attribute
Making ComboBox's ID unique by using it's Key
Changed Multiline to be sunken and have a border depth setting now
Removed a second canvas that was being used for Graph element.
Changed how no titlebar is implemented running on Linux versus Windows. -type splash
now used for Linux
PopupScrolled - Added back using CloseButton to close the window
Fixed PopupGetFolder to use correct PySimpleGUI program constructs (keys)

501/511

PopupGetText populated values carrectly using the value variable, used keys
PopupAnimated finally gets a completely transparent background

3.33.0 and 1.33 PySimpleGUI 25-May-2019
Emergency fix due to debugger. Old bug was that Image Element was not testing for
COLOR_SYSTEM_DEFAULT correctly.

3.34.0 PySimpleGUI & 1.34.0 PySimpleGUI27 25-May-2019
pip rhw w cenf * Fixed Window.Maximize and Window.Normal - needed special code for Linux
* Check for DEFAULT_SCROLLBAR_COLOR not being the COLOR_SYSTEM_DEFAULT (crashed)

3.35 PySimpleGUI & 1.35 PySimpleGUI27 27-May-2019
Bug fix - when setting default for Checkbox it was also disabling the element!

3.36 PySimpleGUI & 1.36 PySimpleGUI27 29-May-2019
A combination of user requests, and needs of new imwatchingyou debugger

New Debugger Icon for future built-in debugger
Fixed bug in FindBoundReturnKey - needed to also check Panes
NEW Window functions to turn on/off the Grab Anywhere feature

Window.GrabAnyWhereOn()
Window.GrabAnyWhereOff()

New "Debugger" button that's built-in like other buttons. It's a TINY button with a logo.
For future use when a debugger is built into PySimpleGUI itself (SOON!)
Change Text Element Wrap Length calculation. Went fromn +40 pixels to +10 pixels in
formula
PopupGetFile has new parameter - multiple_files . If True then allows selection of
multiple files

3.37 PySimpleGUI & 1.37 PySimpleGUI27 1-June-2019
The built-in debugger is HERE - might not WORK exactly yet, but a lot of code went into te
PySimpleGUI.py file for this. At the moment, the imwatchingyou package is THE way to
use a PySimpleGUI debugger. But soon enough you won't need that project in order to
debug your program.
Some strange code reformatting snuck in. There are 351 differences between this and
previous release. I'm not sure what happened but am looking at every change by hand.

502/511

New Calendar Button features
locale, format - new parameters to TKCalendar call
Use custom icon for window if one has been set
New parameters to CalendarButton - locale , format

The bulk of the built-in PySimpleGUI debugger has been added but is not yet "officially
supported". Try pressing "break" or "ctrl+break" on your keyboard.

New bindings for break / pause button and debugger
New Debug button will launch debugger.
New parameter debugger_enabled added to Window call. Default is enabled.
Your progam's call to Read is all that's needed to refresh debugger
New Window methods to control debugger access

EnableDebugger - turns on HOTKEYS to debugger
DisableDebugger - turns off HOTKEYS to debugger

Restored wrap len for Text elements back from +10 to +40 pixels
PopupGetFolder , PopupGetFile - fixed so that the "hidden" master window stays hidden

(a Linux problem)
Added support for Multiple Files to PopupGetFiles when no_window option has been
set.

3.38 PySimpleGUI, 1.38 PySimpleGUI27
Multiline - now has a "read only" state if created as "Disabled"
Multiline - If window is created as resizable, then Multiline Elements will now expand
when the window is enlarged, a feature long asked for.
Output Element expands in the Y Direction
"Expandable Rows" option added to PackFormIntoFrame allowing future elements to
also expand
Error Element - silence_on_error option
Text Element wrapping - FINALLY got it right? No more "Fudge factor" added
PopupScrolled - Windows are now resizable
Option to "launch built-in debugger" from the test harness
Rememeber that the Debugger is still in this code! It may or may not be operational as
it's one version back from the latest release of the imwatchingyou debugger code. This
code needs to be integrated back in

3.39 PySimpleGUI & 1.39 PySimpleGUI27 13-June-2019
Ported the imwatchingyou debugger code into PySimpleGUI code

Replaced old debugger built-in code with the newer imwatchingyou version
Required removing all of the 'sg.' before PySimpleGUI calls since not importing
Dynamically create the debugger object when first call to refresh or show is
made

503/511

Started the procecss of renaming Class Methods that are private to start with _
Needed for the automatic documentation generation that's being worked on
Fixed crash when clicking the Debug button
Fixed bug in DeleteFigure. Needed to delete image separately
Added more type hints
New TabGroup method SelectTab(index) selects a Tab within a TabGroup
New Table.Update parameter - select_rows . List of rows to select (0 is first)
Error checking in Window.Layout provides error "hints" to the user

Looks for badly placed ']'
Looks for functions missing '()'
Pops up a window warning user instead of crashing
May have to revisit if the popups start getting in the way

New implementations of Window.Disable() and Window.Enable()
Previously did not work correctly at all
Now using the "-disabled" attribute

Allow Comboboxes to have empty starting values
Was crashing
Enables application to fill these in later

4.0.0 PySimpleGUI & 2.0.0 PySimpleGUI27 19-June-2019
DOC STRINGS DOCS STRINGS DOC STRINGS!

Your IDE is about to become very happy
All Elements have actual documentation in the call signature
The Readme and ReadTheDocs will be generated going forward using the CODE
HUGE Thanks for @nngogol for both copying & adding all those strings, but also for
making an entire document creation system.

New version string for PySimpleGUI.py
New parameter to ALL SetFocus calls.

def SetFocus(self, force=False)
If force is True, then a call to focus_force is made instead of focus_set

Get - New Radio Button Method. Returns True is the Radio Button is set
Rename of Debugger class to _Debugger so IDEs don't get confused
User read access to last Button Color set now available via property Button.ButtonColor
Rename of a number of callback handlers to start with _
Fix for memory leak in Read call. Every call to read lost a little memory due to
root.protocol calls
Listbox.Update - New parameter - scroll_to_index - scroll view so that index is shown at
the top
First PyPI release to use new documentation!

PySimpleGUI 4.1 Anniversary Release! 4-Aug-2019
504/511

NEVER has there been this long of a lag, sorry to all users! Long time coming. Docstrings
continue to be a focus.

Version can be found using PySimpleGUI.version
New bit of licensing info at the top of the file
Types used in the doc strings. Also type hints in some comments. Because also running
on 2.7 can't use full typing
Added using of Warnings. Just getting started using this mechanism. May be great,
maybe not. We'll see with this change
Added TOOLTIP_BACKGROUND_COLOR which can be changed (it's tkinter only setting
however so undertand this!)
Graph.DrawText. Ability to set text_location when drawing text onto a Graph Element.
Determines what part of the text will be located at the point you provide when you draw
the text. Choices are:

TEXT_LOCATION_TOP
TEXT_LOCATION_BOTTOM
TEXT_LOCATION_LEFT
TEXT_LOCATION_RIGHT
TEXT_LOCATION_TOP_LEFT
TEXT_LOCATION_TOP_RIGHT
TEXT_LOCATION_BOTTOM_LEFT
TEXT_LOCATION_BOTTOM_RIGT
TEXT_LOCATION_CENTER

Flag ENABLE_TK_WINDOWS = False. If True, all windows will be made using only tk.Tk()
SetFocus available for all elements now due to it being added to base class. May NOT
work on all elements however
Added Combo.GetSElectedItemsIndexes() - returns a list of all currently selected items
Fixed Listbox.Update - set_to_index changed to be an int, list or tuple
Added parent parameter to call to tkinter's askopenfilename, directory, filenames. Not
sure why the root wasn't passed in before
Button.Update - also sets the activebackground to the button's background color
Graph - New parameter when creating. float_values . If True, then you're indicating that
your coordinate system is float not int based
Graph.Update - made background color optional parm so that visible only can be set
Frame.Layout returns self now for chaining
TabGroup.Layout returns self now for chaining
Column.Layout returns self now for chaining
Menu.Update menu_definition is now optional to allow for changing visibility only
Added inivisiblity support for menu bars
Table.Update supports setting alternating row color and row_colors (list of rows and the
color to set)
Set window.TimeoutKey to TIMEOUT_KEY initially

505/511

Window - check for types for title (should be string) and layout (should be list) and warns
user if not correct
Window - renamed some methods by adding _ in front (like Show) as they are NOT user
callable
Another shortcut! Elem = Element = FindElement
SaveToDisk - will not write buttons to file. Fixed problems due to buttons having keys
Remapped Windowl.CloseNonBlockingForm, Window.CloseNonBlocking to be
Window.CloseNonBlocking
Fix for returning values from a combo list. Wasn't handling current value not in list of
provided values
Spin - Returns an actual value from list provided when Spin was created or updated
Chaneged FillFormWithValues to use the new internal AllKeysDict dictionary
Added try when creating combo. Problem happens when window is created twice. Prior
window had already created the style
Added list of table (tree) ids to the Table element
Enabled autoclose to use fractions of a second
Added a try around one of the destroys because it could fail if user aborted
Popup - Icon is no longer set to default by default
Fix for debugger trying to execute a REPL comand. The exec is only avilable in Python 3
main() will display the version number in big letters when program is running

4.2 PySimpleGUI 2.2 for PySimpleGUI27 18 - Aug 2019

The cool lookup release! No more need for FindElement. You can continue to use FindElement.
However, your code will look weird and ancient. ;-) (i.e. readable) MORE Docstring and main
doc updates!

Finally 2.7 gets an upgrade and with it doc strings. It however doesn't get a full-version
bump like main PySimpleGUI as this may be its last release.
New window[key] == window.FindElement(key)
New Update calling method. Can directly call an Element and it will call its Update
method

window[key](value=new_value) ==
window.FindElement(key).Update(value=new_value)

Made Tearoff part of element so anything can be a menu in theory
Removed a bunch of __del__ calls. Hoping it doesn't bite me in memory leaks
Combo.Get method added
Combo.GetSelectedItemsIndexes removed
New Graph methods SendFigureToBack, BringFigureToFront
Butten release changed for better Graph Dragging

Now returns key+"Up" for the event
Also returns the x,y coords in the values

Tab.Select method added
506/511

TabGroup.Get method added - returns key of currently selected Tab
Window finalize parameter added - Will call finalize if a layout is also included. No more
need for Finalize!!
Quiet, steady change to PEP8 user interface started

Now available are Window methods - read, layout, finalize, find_element, element,
close
Should provide 100% PEP with these alone for most PySimpleGUI programs

Added finding focus across ALL elements by using the .Widget member variable
Fixed sizing Columns! NOW they will finally be the size specified
Fixed not using the initialdir paramter in PopupGetFile if the no_window option is set

4.3 PySimpleGUI Release 22-Aug-2019
PEP8 PEP8 PEP8 Layout controls! Can finally center stuff Some rather impactful changes this
time Let's hope it doesn't all blow up in our faces!

PEP8 interfaces added for Class methods & functions
Finally a PEP8 compliant interface for PySimpleGUI!!
The "old CamelCase" are still in place and will be for quite some time
Can mix and match at will if you want, but suggest picking one and sticking with it
All docs and demo programs will need to be changed

Internally saving parent row frame for layout checks
Warnings on all Update calls - checks if Window.Read or Window.Finalize has been called
Warning if a layout is attempted to be used twice

Shows an "Error Popup" to get the user's attention for sure
Removed all element-specific SetFocus methods and made it available to ALL elements
Listbox - no_scrollbar parameter added. If True then no scrollbar will be shown
NEW finalize bool parameter added to Window. Removes need to "chain" .Finalize() call.
NEW element_justification parameter for Column, Frame, Tab Elements and Window

Valid values are 'left', 'right', 'center'. Only first letter checked so can use 'l', 'c','r'
Default = 'left'
Result is that all Elements INSIDE of this container will be justified as specified
Works well with new Sizer Elements

NEW justification parameter for Column elements.
Justifies Column AND the row it's on to this setting (left, right, center)
Enables individual rows to be justified in addition to the entire window

NEW Sizer Element
Has width and height parameters. Can set one or both
Causes the element it is contained within to expand according to width and height
of Sizer Element
Helps greatly with centering. Frames will shrink to fit the contents for example. Use
Sizer to pad out to right size

Added Window.visibility_changed to match the PySimpleGUIQt call
507/511

Fixed Debugger so that popout window shows any newly added locals

4.4 PySimpleGUI Release 5-Sep-2019
window() - "Calling" your Window object will perform a Read call
InputText - move cursor to end following Update
Shortcuts - trying to get a manageable and stable set of Normal, Short, Super-short

DD - DropDown (Combo)
LB, LBox - Listbox
R, Rad - Radio
ML, MLine - Multiline
BMenu - ButtonMenu
PBar, Prog - ProgressBar
Col - Column

Listbox - new method GetIndexes returns currently selected items as a list of indexes
Output - new method Get returns the contents of the output element
Button - For Macs don't don't allow setting button color. Previously only warned
ButtonMenu - new Click method will click the button just like a normal Button's Click
method
Column scrolling finally works correctly with mousewheel. Shift+Mouse Scroll will scroll
horizontally
Table - Get method is a dummy version a Get because Qt port got a real Get method
Table - Will add numerical column headers if Column Headsing is set to None when
creating Table Element
Table - FIXED the columns crazily resizing themselves bug!!
Table - Can resize individual columns now
Tree - was not returning Keys but instead the string representation of the key
SetIcon will set to default base64 icon if there's an error loading icon
Fix for duplicate key error. Was attempting to add a "unique key counter" onto end of
keys if duplicate, but needed to turn into string first
Columns

No longer expand nor fill
Sizing works for both scrolled and normal

Setting focus - fixed bug when have tabs, columns, frames that have elements that can
get the focus. Setting focus on top-level window
InputText elements will now cause rows to expand due to X direction expansion
Frame - Trying to set the size but doesn't seem to be setting it correctly
Tabs will now expand & fill now (I hope this is OK!!!)

4.5 PySimpleGUI Release 04-Nov-2019

508/511

Metadata!
All elements have a NEW metadata parameter that you can set to anything and
access with Element.metadata
Windows can have metadata too

Window.finalize() - changed internally to do a fully window.read with timeout=1 so that it
will complete all initializations correctly
Removed typing import
ButtonReboundCallback - Used with tkinter's Widget.bind method. Use this as a "target"
for your bind and you'll get the event back via window.read()
NEW Element methods that will work on a variety of elements:

set_size - sets width, height. Can set one or both
get_size - returns width, heigh of Element (underlying Widget), usually in PIXELS
hide_row - hides the entire row that an element occupies
unhide_row - makes visible the entire row that an element occupies
expand - causes element to expand to fill available space in X or Y or both
directions

InputText Element - Update got new parameters: text_color=None,
background_color=None, move_cursor_to='end'
RadioButton - fix in Update. Was causing problems with loading a window from disk
Text Element - new border width parameter that is used when there's a relief set for the
text element
Output Element - special expand method like the one for all other elements
Frame element - Can change the text for the frame using Update method
Slider element - can change range. Previously had to change value to change the range
Scrollable frame / column - change to how mousewheel scrolls. Was causing all things to
scroll when scrolling a single column

NOTE - may have a bad side effect for scrolling tables with a mouse wheel
Fix for icon setting when creating window. Wasn't defaulting to correct icon
Window.get_screen_size() returns the screen width and height. Does not have to be a
window that's created already as this is a class method
Window.GetScreenDimensions - will return size even if the window has been destroyed
by using get_screen_size
Now deleting window read timers every time done with them
Combo no longer defaults to first entry
New Material1 and Material2 look and feel color schemes
change_look_and_feel has new "force" parameter. Set to True to force colors when using
a Mac
Fix in popup_get_files when 0 length of filename
Fix in Window.SetIcon - properly sets icon using file with Linux now. Was always
defaulting

Upcoming
509/511

Make suggestions people! Future release features

Code Condition

Make it run
Make it right
Make it fast

It's a recipe for success if done right. PySimpleGUI has completed the "Make it run" phase. It's
far from "right" in many ways. These are being worked on. The module is particularly poor for
PEP 8 compliance. It was a learning exercise that turned into a somewhat complete GUI
solution for lightweight problems.

While the internals to PySimpleGUI are a tad sketchy, the public interfaces into the SDK are
more strictly defined and comply with PEP 8 for the most part.

Please log bugs and suggestions in the GitHub! It will only make the code stronger and better
in the end, a good thing for us all, right?

Design
A moment about the design-spirit of PySimpleGUI . From the beginning, this package was
meant to take advantage of Python's capabilities with the goal of programming ease.

Single File While not the best programming practice, the implementation resulted in a single
file solution. Only one file is needed, PySimpleGUI.py. You can post this file, email it, and easily
import it using one statement.

Functions as objects In Python, functions behave just like object. When you're placing a Text
Element into your form, you may be sometimes calling a function and other times declaring an
object. If you use the word Text, then you're getting an object. If you're using Txt , then you're
calling a function that returns a Text object.

Lists It seemed quite natural to use Python's powerful list constructs when possible. The form
is specified as a series of lists. Each "row" of the GUI is represented as a list of Elements.

Dictionaries Want to view your form's results as a dictionary instead of a list... no problem,
just use the key keyword on your elements. For complex forms with a lot of values that need
to be changed frequently, this is by far the best way of consuming the results.

You can also look up elements using their keys. This is an excellent way to update elements in
reaction to another element. Call form.FindElement(key) to get the Element.

510/511

Named / Optional Parameters This is a language feature that is featured heavily in all of the
API calls, both functions and classes. Elements are configured, in-place, by setting one or more
optional parameters. For example, a Text element's color is chosen by setting the optional
text_color parameter.

tkinter tkinter is the "official" GUI that Python supports. It runs on Windows, Linux, and Mac. It
was chosen as the first target GUI framework due to its ubiquity. Nearly all Python
installations, with the exception of Ubuntu Linux, come pre-loaded with tkinter. It is the
"simplest" of the GUI frameworks to get up an running (among Qt, WxPython, Kivy, etc).

From the start of the PSG project, tkinter was not meant to be the only underlying GUI
framework for PySimpleGUI. It is merely a starting point. All journeys begin with one step
forward and choosing tkinter was the first of many steps for PySimpleGUI. Now there are 4
ports up and running - tkinter, WxPython, Qt and Remi (web support)

Author & Owner
The PySimpleGUI Organization

This documentation as well as all PySimpleGUI code is Copyright 2018, 2019 by
PySimpleGUI.org

Send correspondance to PySimpleGUI@PySimpleGUI.com

License
GNU Lesser General Public License (LGPL 3) +

Acknowledgments
There are a number of people that have been key contributors to this project both directly and
indirectly. Paid professional help has been deployed a number of critical times in the project's
history. This happens in the life of software development from time to time.

If you've helped, I sure hope that you feel like you've been properly thanked. That you have
been recognized. If not, then say something.... drop an email to comments@PySimpleGUI.org.

511/511

	PySimpleGUI
	PySimpleGUI User's Manual
	Python GUI For Humans - Transforms tkinter, Qt, Remi, WxPython into portable people-friendly Pythonic interfaces
	This manual is crammed full of answers so start your search for answers here. Read/Search this prior to opening an Issue on GitHub. Press Control F and type.

	Jump-Start
	Install
	This Code
	Makes This Window
	Any Questions? It's that simple.
	Looking for a GUI package? Are you....
	The basics
	July-2019 Note - This readme is being generated from the PySimpleGUI.py file located on GitHub. As a result, some of the calls or parameters may not match the PySimpleGUI that you pip installed.

	GUI Development does not have to be difficult nor painful. It can be FUN
	What users are saying about PySimpleGUI
	START HERE - User Manual with Table of Contents
	Quick Links To Help and The Latest News and Releases

	About The PySimpleGUI Documentation System
	Documentation and Demos Get Out of Date

	Platforms
	Hardware and OS Support
	Hardware
	OS
	Python versions
	Warning - tkinter + Python 3.7.3 and later, including 3.8 has problems

	Output Devices
	A Complete PySimpleGUI Program (Getting The Gist)
	The final bit of magic is in how Elements are created and changed.
	That's The Basics

	The Underlying GUI Frameworks & Status of Each

	The PySimpleGUI "Family"
	What's The Big Deal? What is it?
	The "Ports"
	Qt Version
	WxPython Version
	Web Version (Remi)
	Source code compatibility
	repl.it Version
	PySimpleGUI (tkinter based)
	PySimpleGUIWeb (Remi based)
	Creating a repl.it project from scratch / troubleshooting
	Why this is so cool (listen up Teachers, tutorial writers)
	Repl.it is NOT a web server for you to "deploy" applications!

	Macs

	Support
	Don't Suffer Silently
	How to log issues
	PySimpleGUI Trolls
	Target Audience
	Beginners & Easier Programs
	Advanced Programmers, Sharp Old-Timers, Code Slingers and Code Jockeys
	A Moment of Thanks To The PySimpleGUI Users

	Learning Resources
	The PySimpleGUI, Developer-Centric Model
	Psychological Warfare
	Tools

	This Readme and Cookbook
	Demo Programs

	The Quick Tour
	The Beauty of Simplicity

	Some Examples
	Polishing Your Windows = Building "Beautiful Windows"

	Pi Windows
	Games
	Windows Programs That Look Like Windows Programs
	Background - Why PySimpleGUI Came to Be
	The Non-OO and Non-Event-Driven Model
	The Result

	Features
	Design Goals
	Lofty Goals

	Getting Started with PySimpleGUI
	Installing PySimpleGUI
	Installing on Python 3
	Installing for Python 2.7
	Testing your installation and Troubleshooting
	The Quick Test
	Instructions for Testing Python 2.7:
	Instructions for Testing Python 3:

	Finding Out Where Your PySimpleGUI Is Coming From
	Finding Out Where Your PySimpleGUI Is Coming From (from within your code)
	Manual installation
	Prerequisites
	EXE file creation

	IDEs
	Officially Supported IDEs
	Using The Docstrings (Don't skip this section)

	Using - Python 3
	Python 3.7

	Using - Python 2.7
	Code to Automatically Import Correct Version

	PEP8 Bindings For Methods and Functions
	The Non-PEP8 Methods and Functions
	The Renaming Convention
	Class Variables
	Scrolled Output

	Progress Meters!
	Debug Output (EasyPrint = Print = eprint)
	Custom window API Calls (Your First window)
	The window Designer
	Example 2 - Get a filename

	Copy these design patterns!
	Pattern 1 - "One-shot Window" - Read a window one time then close it
	Pattern 2 A - Persistent window (multiple reads using an event loop)
	Pattern 2 B - Persistent window (multiple reads using an event loop + updates data in window)
	Qt Designer

	How GUI Programming in Python Should Look? At least for beginners ?
	Return values
	Two Return Values

	Events
	Window closed event
	Button Click Events
	None is returned when the user clicks the X to close a window.
	Element Events
	Other Events
	Menubar menu item chosen for MenuBar menus and ButtonMenu menus
	Windows - keyboard, mouse scroll wheel
	Timeouts

	The values Variable - Return values as a list
	values Variable - Return values as a dictionary

	The Event Loop / Callback Functions
	Operations That Take a "Long Time"
	Multitheaded Programs

	Building Custom Windows
	Synchronous / Asynchronous Windows

	Window Object - Beginning a window
	Window Location
	Multiple Monitors and Linux

	Window Size
	Element Sizes
	No Titlebar
	Grab Anywhere
	Always on top
	Focus
	Closing Windows
	Window Methods That Complete Formation of Window
	The Individual Calls
	Chaining The Calls (the old method)
	Using Parameters Instead of Calls (New Preferred Method)
	Finalize() or Window parameter finalize=True
	Read(timeout=None, timeout_key=TIMEOUT_KEY)

	Layouts
	Generated Layouts (For sure want to read if you have > 5 repeating elements/rows)
	Example - List Comprehension To Concatenate Multiple Rows - "To Do" List Example
	Brute Force
	Build By Concatenating Rows
	Create Several Rows Using List Comprehension
	Concatenating Multiple Rows
	Final "To Do List" Program

	Example - List Comprehension to Build Rows - Table Simulation - Grid of Inputs
	Building the Header
	Building the Input Elements
	Putting it all together

	User Defined Elements / Compound Elements
	Example - A Grid of Buttons for Calculator App
	Compound Elements

	Elements
	Common Element Parameters
	Tooltip
	Size
	Element Sizes - Non-tkinter Ports (Qt, WxPython, Web)
	Colors
	Pad
	Font
	Key
	Visible

	Shortcut Functions / Multiple Function Names
	Text Element | T == Txt == Text
	Window.FindElement(key) Shortcut Window[key]
	Fonts
	Color in PySimpleGUI are in one of two formats - color name or RGB value.
	auto_size_text
	Chortcut functions
	Events enable_events

	Multiline Element
	Text Input Element | InputText == Input == In
	Note about the do_not_clear parameter

	Combo Element | Combo == InputCombo == DropDown == Drop
	Listbox Element
	Slider Element
	Qt Sliders

	Radio Button Element
	Checkbox Element | CBox == CB == Check
	Spin Element
	Image Element
	Button Element
	Button Element Shortcuts
	"Chooser" Buttons
	Button targets
	Invisible Targets

	Save & Open Buttons
	Calendar Buttons
	Color Chooser Buttons
	Custom Buttons
	Button Images

	VerticalSeparator Element
	HorizontalSeparator Element
	ProgressBar Element
	Progress Meter in Your window

	Output Element
	Column Element & Frame, Tab "Container" Elements
	Column, Frame, Tab, Window element_justification

	Sizer Element
	Frame Element (Labelled Frames, Frames with a title)
	Canvas Element
	Matplotlib, Pyplot Integration
	Methods & Properties

	Graph Element
	Mouse Events Inside Graph Elements
	Mouse Up Event for Drags

	Table Element
	window.read() return values from Table Element
	The Qt Table.Get() call
	Known Table visualization problem....
	Known table colors in Python 3.7.3, 3.7.4, 3.8, ?
	Empty Tables
	Events from Tables

	Tree Element
	TreeData format
	Icons on Tree Entries

	Tab and Tab Group Elements
	Reading Tab Groups

	Colors

	SystemTray
	System Tray Design Pattern
	Icons

	SystemTray Methods
	Read special return values
	Hide
	Close
	UnHide
	ShowMessage
	Update

	Global Settings
	Persistent windows (Window stays open after button click)
	Read(timeout = t, timeout_key=TIMEOUT_KEY)
	Non-Blocking Windows (Asynchronous reads, timeouts)
	sg.TIMEOUT_KEY
	Small Timeout Values (under 10ms)
	Periodically CallingRead

	Persistent Window Example - Running timer that updates
	Instead of a Non-blocking Read --- Use enable_events = True or return_keyboard_events = True

	Updating Elements (changing element's values in an active window)
	Locating Elements (FindElement == Element == Elem)
	ProgressBar / Progress Meters

	Keyboard & Mouse Capture
	Methods

	Running Multiple Windows
	THE GOLDEN RULE OF WINDOW LAYOUTS
	Demo Programs For Multiple Windows
	Multi-Window Design Pattern 1 - both windows active
	Multi-Window Design Pattern 2 - only 1 active window

	The PySimpleGUI Debugger
	What is it? Why use it? What the heck? I already have an IDE.
	Preparing To Run the Debugger
	What happens if you don't add a timeout

	A Sample Program For Us To Use
	Debugger Windows
	"Popout Debugger Window"
	Ways of Launching the Popout Window
	When you are asked for the "Location of your PySimpleGUI package or PySimpleGUI.py file" do this
	What's NOT Listed In The Popout Debugger Window

	The "Main Debugger Window"
	Ways of Opening the Main Debugger Window
	The "Variables" Tab of Main Debugger Window
	The REPL & Watches Tab
	Obj Button to the Rescue!

	The REPL Prompt
	Your "XRay" and "Endoscope" into Your Program
	Execute Code
	KNOW Answers to Questions About Your Program

	How To Use the Debugger to Find The Version Number of a Package

	Extending PySimpleGUI
	Widget Access
	Element.Widget is The GUI Widget
	Example Use of Element.Widget
	Finding Your Element's Widget Type

	Window Level Access
	Binding tkiner "events"

	ELEMENT AND FUNCTION CALL REFERENCE
	Caution - Some functions / methods may be internal only yet exposed in this documenation
	Button Element
	ButtonCallBack
	ButtonPressCallBack
	ButtonReboundCallback
	ButtonReleaseCallBack
	Click
	GetText
	SetFocus
	SetTooltip
	Update
	button_rebound_callback
	click
	expand
	get_size
	get_text
	hide_row
	set_focus
	set_size
	set_tooltip
	unhide_row
	update
	ButtonReboundCallback
	Click
	SetFocus
	SetTooltip
	Update
	button_rebound_callback
	expand
	get_size
	hide_row
	set_focus
	set_size
	set_tooltip
	unhide_row
	update

	Canvas Element
	ButtonReboundCallback
	SetFocus
	SetTooltip
	TKCanvas
	property: TKCanvas

	button_rebound_callback
	expand
	get_size
	hide_row
	set_focus
	set_size
	set_tooltip
	tk_canvas
	property: tk_canvas

	unhide_row

	Checkbox Element
	ButtonReboundCallback
	Get
	SetFocus
	SetTooltip
	Update
	button_rebound_callback
	expand
	get
	get_size
	hide_row
	set_focus
	set_size
	set_tooltip
	unhide_row
	update

	Column Element
	AddRow
	ButtonReboundCallback
	Layout
	SetFocus
	SetTooltip
	Update
	add_row
	button_rebound_callback
	expand
	get_size
	hide_row
	layout
	set_focus
	set_size
	set_tooltip
	unhide_row
	update

	Combo Element
	ButtonReboundCallback
	Get
	SetFocus
	SetTooltip
	Update
	button_rebound_callback
	expand
	get
	get_size
	hide_row
	set_focus
	set_size
	set_tooltip
	unhide_row
	update

	Frame Element
	AddRow
	ButtonReboundCallback
	Layout
	SetFocus
	SetTooltip
	Update
	add_row
	button_rebound_callback
	expand
	get_size
	hide_row
	layout
	set_focus
	set_size
	set_tooltip
	unhide_row
	update

	Graph Element
	BringFigureToFront
	ButtonPressCallBack
	ButtonReboundCallback
	ButtonReleaseCallBack
	DeleteFigure
	DrawArc
	DrawCircle
	DrawImage
	DrawLine
	DrawOval
	DrawPoint
	DrawRectangle
	DrawText
	Erase
	MotionCallBack
	Move
	MoveFigure
	RelocateFigure
	SendFigureToBack
	SetFocus
	SetTooltip
	TKCanvas
	property: TKCanvas

	Update
	bring_figure_to_front
	button_press_call_back
	button_rebound_callback
	button_release_call_back
	delete_figure
	draw_arc
	draw_circle
	draw_image
	draw_line
	draw_oval
	draw_point
	draw_rectangle
	draw_text
	erase
	expand
	get_size
	hide_row
	motion_call_back
	move
	move_figure
	relocate_figure
	send_figure_to_back
	set_focus
	set_size
	set_tooltip
	tk_canvas
	property: tk_canvas

	unhide_row
	update

	Image Element
	ButtonReboundCallback
	SetFocus
	SetTooltip
	Update
	UpdateAnimation
	button_rebound_callback
	expand
	get_size
	hide_row
	set_focus
	set_size
	set_tooltip
	unhide_row
	update
	update_animation

	InputText Element
	ButtonReboundCallback
	Get
	SetFocus
	SetTooltip
	Update
	button_rebound_callback
	expand
	get
	get_size
	hide_row
	set_focus
	set_size
	set_tooltip
	unhide_row
	update

	Listbox Element
	ButtonReboundCallback
	GetIndexes
	GetListValues
	SetFocus
	SetTooltip
	SetValue
	Update
	button_rebound_callback
	expand
	get_indexes
	get_list_values
	get_size
	hide_row
	set_focus
	set_size
	set_tooltip
	set_value
	unhide_row
	update
	ButtonReboundCallback
	SetFocus
	SetTooltip
	Update
	button_rebound_callback
	expand
	get_size
	hide_row
	set_focus
	set_size
	set_tooltip
	unhide_row
	update

	Multiline Element
	ButtonReboundCallback
	Get
	SetFocus
	SetTooltip
	Update
	button_rebound_callback
	expand
	get
	get_size
	hide_row
	set_focus
	set_size
	set_tooltip
	unhide_row
	update
	ButtonReboundCallback
	SetFocus
	SetTooltip
	Update
	button_rebound_callback
	expand
	get_size
	hide_row
	set_focus
	set_size
	set_tooltip
	unhide_row
	update

	Output Element
	ButtonReboundCallback
	Get
	SetFocus
	SetTooltip
	TKOut
	property: TKOut

	Update
	button_rebound_callback
	expand
	get_size
	hide_row
	set_focus
	set_size
	set_tooltip
	tk_out
	property: tk_out

	unhide_row
	update

	Pane Element
	ButtonReboundCallback
	SetFocus
	SetTooltip
	Update
	button_rebound_callback
	expand
	get_size
	hide_row
	set_focus
	set_size
	set_tooltip
	unhide_row
	update

	ProgressBar Element
	ButtonReboundCallback
	SetFocus
	SetTooltip
	Update
	UpdateBar
	button_rebound_callback
	expand
	get_size
	hide_row
	set_focus
	set_size
	set_tooltip
	unhide_row
	update
	update_bar

	Radio Element
	ButtonReboundCallback
	Get
	ResetGroup
	SetFocus
	SetTooltip
	Update
	button_rebound_callback
	expand
	get
	get_size
	hide_row
	reset_group
	set_focus
	set_size
	set_tooltip
	unhide_row
	update

	Slider Element
	ButtonReboundCallback
	SetFocus
	SetTooltip
	Update
	button_rebound_callback
	expand
	get_size
	hide_row
	set_focus
	set_size
	set_tooltip
	unhide_row
	update

	Spin Element
	ButtonReboundCallback
	Get
	SetFocus
	SetTooltip
	Update
	button_rebound_callback
	expand
	get
	get_size
	hide_row
	set_focus
	set_size
	set_tooltip
	unhide_row
	update

	StatusBar Element
	ButtonReboundCallback
	SetFocus
	SetTooltip
	Update
	button_rebound_callback
	expand
	get_size
	hide_row
	set_focus
	set_size
	set_tooltip
	unhide_row
	update

	Tab Element
	AddRow
	ButtonReboundCallback
	Layout
	Select
	SetFocus
	SetTooltip
	Update
	add_row
	button_rebound_callback
	expand
	get_size
	hide_row
	layout
	select
	set_focus
	set_size
	set_tooltip
	unhide_row
	update

	TabGroup Element
	AddRow
	ButtonReboundCallback
	FindKeyFromTabName
	Get
	Layout
	SetFocus
	SetTooltip
	add_row
	button_rebound_callback
	expand
	find_key_from_tab_name
	get
	get_size
	hide_row
	layout
	set_focus
	set_size
	set_tooltip
	unhide_row

	Table Element
	ButtonReboundCallback
	Get
	SetFocus
	SetTooltip
	Update
	button_rebound_callback
	expand
	get
	get_size
	hide_row
	set_focus
	set_size
	set_tooltip
	treeview_double_click
	treeview_selected
	unhide_row
	update

	Text Element
	ButtonReboundCallback
	SetFocus
	SetTooltip
	Update
	button_rebound_callback
	expand
	get_size
	hide_row
	set_focus
	set_size
	set_tooltip
	unhide_row
	update

	Tree Element
	ButtonReboundCallback
	SetFocus
	SetTooltip
	Update
	add_treeview_data
	button_rebound_callback
	expand
	get_size
	hide_row
	set_focus
	set_size
	set_tooltip
	treeview_selected
	unhide_row
	update

	TreeData Element
	Insert
	Node
	insert

	VerticalSeparator Element
	ButtonReboundCallback
	SetFocus
	SetTooltip
	button_rebound_callback
	expand
	get_size
	hide_row
	set_focus
	set_size
	set_tooltip
	unhide_row

	Window
	AddRow
	AddRows
	AlphaChannel
	property: AlphaChannel

	BringToFront
	Close
	CurrentLocation
	Disable
	DisableDebugger
	Disappear
	Elem
	Element
	Enable
	EnableDebugger
	Fill
	Finalize
	Find
	FindElement
	FindElementWithFocus
	GetScreenDimensions
	GrabAnyWhereOff
	GrabAnyWhereOn
	Hide
	Layout
	LoadFromDisk
	Maximize
	Minimize
	Move
	Normal
	Read
	Reappear
	Refresh
	SaveToDisk
	SetAlpha
	SetIcon
	SetTransparentColor
	Size
	property: Size

	UnHide
	VisibilityChanged
	add_row
	add_rows
	alpha_channel
	property: alpha_channel

	bring_to_front
	close
	current_location
	disable
	disable_debugger
	disappear
	elem
	element
	enable
	enable_debugger
	fill
	finalize
	find
	find_element
	find_element_with_focus
	get_screen_dimensions
	get_screen_size
	grab_any_where_off
	grab_any_where_on
	hide
	layout
	load_from_disk
	maximize
	minimize
	move
	normal
	read
	reappear
	refresh
	save_to_disk
	set_alpha
	set_icon
	set_transparent_color
	size
	property: size

	un_hide
	visibility_changed

	"Demo Programs" Applications
	Packages Used In Demos

	Creating a Windows .EXE File
	Creating a Mac App File
	Debug Output
	Look and Feel
	ChangleLookAndFeel

	Known Issues
	MACS + tkinter = SUCKS
	Multiple threads
	Do not attempt to call PySimpleGUI from multiple threads! It's tkinter based and tkinter has issues with multiple threads

	Contributing
	Core Code
	Demos
	GitHub Repos
	Versions
	Release Notes
	3.2.0
	3.3.0
	3.4.0
	3.4.1
	3.5.0
	3.5.1
	3.5.2
	3.6.0
	3.8.0
	1.0.0 Python 2.7
	3.8.2
	3.8.3
	3.8.6
	3.9.0 & 1.1.0
	3.9.1 & 1.1.2
	3.9.3 & 1.1.3
	3.9.4 & 1.1.4
	3.10.1 & 1.2.1
	3.10.2 & 1.2.2
	3.10.3 & 1.2.3
	3.11.0 & 1.11.0
	3.12.0 & 1.12.0
	3.13.0 & 1.13.0
	3.14.0 & 1.14.0
	3.15.0 & 1.15.0
	3.16.0 & 1.16.0
	3.17.0 &1.17.0 2-Dec-2018

	3.18.0 11-Dec-2018
	3.19.2 13-Dec-2018
	3.20.0 & 1.20.0 18-Dec-2018
	3.21.0 & 1.21.0 28-Dec-2018

	3.22.0 PySimpleGUI / 1.22.0 PySimpleGUI27
	3.2.0 PySimpleGUI / 1.23.0 PySimpleGUI27 16-Jan-2019
	3.24.0 1.24.0 16-Jan-2019
	3.25 & 1.25 20-Feb-2019
	3.27.0 PySimpleGUI 31-Mar-2019
	3.28.0 11-Apr-2019 PySimpleGUI
	3.29 22-Apr-2019
	3.32.0 PySimpleGUI 24-May-2019
	3.33.0 and 1.33 PySimpleGUI 25-May-2019
	3.34.0 PySimpleGUI & 1.34.0 PySimpleGUI27 25-May-2019
	3.35 PySimpleGUI & 1.35 PySimpleGUI27 27-May-2019
	3.36 PySimpleGUI & 1.36 PySimpleGUI27 29-May-2019
	3.37 PySimpleGUI & 1.37 PySimpleGUI27 1-June-2019
	3.38 PySimpleGUI, 1.38 PySimpleGUI27
	3.39 PySimpleGUI & 1.39 PySimpleGUI27 13-June-2019

	4.0.0 PySimpleGUI & 2.0.0 PySimpleGUI27 19-June-2019
	PySimpleGUI 4.1 Anniversary Release! 4-Aug-2019
	4.2 PySimpleGUI 2.2 for PySimpleGUI27 18 - Aug 2019

	4.3 PySimpleGUI Release 22-Aug-2019
	4.4 PySimpleGUI Release 5-Sep-2019
	4.5 PySimpleGUI Release 04-Nov-2019
	Upcoming

	Code Condition
	Design
	Author & Owner
	License
	Acknowledgments

