#!/usr/bin/env python
import sys
import PySimpleGUI as sg


def MachineLearningGUI():
    sg.set_options(text_justification='right')

    flags = [[sg.CB('Normalize', size=(12, 1), default=True), sg.CB('Verbose', size=(20, 1))],
             [sg.CB('Cluster', size=(12, 1)), sg.CB(
                 'Flush Output', size=(20, 1), default=True)],
             [sg.CB('Write Results', size=(12, 1)), sg.CB(
                 'Keep Intermediate Data', size=(20, 1))],
             [sg.CB('Normalize', size=(12, 1), default=True),
              sg.CB('Verbose', size=(20, 1))],
             [sg.CB('Cluster', size=(12, 1)), sg.CB(
                 'Flush Output', size=(20, 1), default=True)],
             [sg.CB('Write Results', size=(12, 1)), sg.CB('Keep Intermediate Data', size=(20, 1))], ]

    loss_functions = [[sg.Rad('Cross-Entropy', 'loss', size=(12, 1)), sg.Rad('Logistic', 'loss', default=True, size=(12, 1))],
                      [sg.Rad('Hinge', 'loss', size=(12, 1)),
                       sg.Rad('Huber', 'loss', size=(12, 1))],
                      [sg.Rad('Kullerback', 'loss', size=(12, 1)),
                       sg.Rad('MAE(L1)', 'loss', size=(12, 1))],
                      [sg.Rad('MSE(L2)', 'loss', size=(12, 1)), sg.Rad('MB(L0)', 'loss', size=(12, 1))], ]

    command_line_parms = [[sg.Text('Passes', size=(8, 1)), sg.Spin(values=[i for i in range(1, 1000)], initial_value=20, size=(6, 1)),
                           sg.Text('Steps', size=(8, 1), pad=((7, 3))), sg.Spin(values=[i for i in range(1, 1000)], initial_value=20, size=(6, 1))],
                          [sg.Text('ooa', size=(8, 1)), sg.Input(default_text='6', size=(8, 1)), sg.Text('nn', size=(8, 1)),
                           sg.Input(default_text='10', size=(10, 1))],
                          [sg.Text('q', size=(8, 1)), sg.Input(default_text='ff', size=(8, 1)), sg.Text('ngram', size=(8, 1)),
                           sg.Input(default_text='5', size=(10, 1))],
                          [sg.Text('l', size=(8, 1)), sg.Input(default_text='0.4', size=(8, 1)), sg.Text('Layers', size=(8, 1)),
                           sg.Drop(values=('BatchNorm', 'other'))], ]

    layout = [[sg.Frame('Command Line Parameteres', command_line_parms, title_color='green', font='Any 12')],
              [sg.Frame('Flags', flags, font='Any 12', title_color='blue')],
              [sg.Frame('Loss Functions',  loss_functions,
                        font='Any 12', title_color='red')],
              [sg.Submit(), sg.Cancel()]]

    sg.set_options(text_justification='left')

    window = sg.Window('Machine Learning Front End',
                       layout, font=("Helvetica", 12))
    button, values = window.read()
    window.close()
    print(button, values)


def CustomMeter():
    # layout the form
    layout = [[sg.Text('A custom progress meter')],
              [sg.ProgressBar(1000, orientation='h',
                              size=(20, 20), key='progress')],
              [sg.Cancel()]]

    # create the form`
    window = sg.Window('Custom Progress Meter', layout)
    progress_bar = window['progress']
    # loop that would normally do something useful
    for i in range(1000):
        # check to see if the cancel button was clicked and exit loop if clicked
        event, values = window.read(timeout=0, timeout_key='timeout')
        if event == 'Cancel' or event == None:
            break
        # update bar with loop value +1 so that bar eventually reaches the maximum
        progress_bar.update_bar(i+1)
    # done with loop... need to destroy the window as it's still open
    window.CloseNonBlocking()


if __name__ == '__main__':
    CustomMeter()
    MachineLearningGUI()