
PySimpleGUI

Now supports both Python 2.7 & 3

Features

Getting Started with PySimpleGUI

Using - Python 3

Using - Python 2.7

Code Samples Assume Python 3

APIs

High Level API Calls - Popup's

Popup Output

Popup Input

Progress Meters!

Debug Output

Custom window API Calls (Your First window)

The window Designer

Copy these design patterns!

Pattern 1 - Read into list or dictionary (The Most Common Pattern)

Pattern 2 - Persistent window (multiple reads using an event loop)

Return values

The Event Loop / Callback Functions

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

All Widgets / Elements

Building Custom Windows

Synchronous windows

Window Object - Beginning a window

Window Location

Sizes

No Titlebar

Grab Anywhere

Always on top

Window Methods (things you can do with a Window object)

Window Methods

Elements

Common Element Parameters

Text Element

Multiline Text Element

Output Element

Input Elements

Text Input Element

Combo Element

Listbox Element

Slider Element

Radio Button Element

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Checkbox Element

Spin Element

Image Element

Button Element

ProgressBar Element

Column Element

Frame Element (Labelled Frames, Frames with a title)

Canvas Element

Graph Element

Table Element

Tree Element

Tab and Tab Group Elements

Colors

Global Settings

Persistent windows (Window stays open after button click)

Asynchronous (Non-Blocking) windows

Updating Elements (changing elements in active window)

Keyboard & Mouse Capture

Realtime Keyboard Capture

Menus

Sample Applications

Packages Used In Demos

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Creating a Windows .EXE File

Fun Stuff

Known Issues

Do not attempt to call PySimpleGUI from multiple threads! It's tkinter based and tkinter has issues with
multiple threads

Contributing

Versions

Release Notes

Code Condition

Design

Author

Demo Code Contributors

License

Acknowledgments

How Do I

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

downloadsdownloads 21k21k downloadsdownloads 2k2k docsdocs passingpassing awesome meterawesome meter 100100 pythonpython 2.7 3.x2.7 3.x

PySimpleGUI
Now supports both Python 2.7 & 3

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

http://pepy.tech/project/pysimplegui
https://pepy.tech/project/pysimplegui27
https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

P Y S I M P L E G U I F O R P Y T H O N 3 . X V E R S I O N 3 .9 .3

P Y S I M P L E G U I F O R P Y T H O N 2 . 7 V E R S I O N 1 .1 .3

Announcements of Latest Developments

ReadTheDocs

COOKBOOK!

Brief Tutorial

Latest Demos and Master Branch on GitHub

Docs in PDF Format

Super-simple GUI to use... Powerfully customizable.

Home of the 1-line custom GUI and 1-line progress meter

Note regarding Python versions
As of 9/25/2018 both Python 3 and Python 2.7 are supported! The Python 3 version is named
PySimpleGUI . The Python 2.7 version is PySimpleGUI27 . They are installed separately and the imports

are different. See instructions in Installation section for more info.

Looking for a GUI package? Taking your Python code from the world of command lines and into the
convenience of a GUI? Have a Raspberry Pi with a touchscreen that's going to waste because you don't have
the time to learn a GUI SDK? Into Machine Learning and are sick of the command line? * Would like to
distribute your Python code to Windows users as a single .EXE file that launches straight into a GUI, much like
a WinForms app?

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://github.com/MikeTheWatchGuy/PySimpleGUI/issues/142
http://pysimplegui.readthedocs.io/
https://pysimplegui.readthedocs.io/en/latest/cookbook/
https://pysimplegui.readthedocs.io/en/latest/tutorial/
https://github.com/MikeTheWatchGuy/PySimpleGUI
https://github.com/MikeTheWatchGuy/PySimpleGUI/tree/master/docs
https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Look no further, you've found your GUI package.

import PySimpleGUI as sg

sg.Popup('Hello From PySimpleGUI!', 'This is the shortest GUI program ever!')

Or how about a custom GUI in 1 line of code?

Build beautiful customized windows that fit your specific problem. Let PySimpleGUI solve your GUI problem
while you solve your real problems. Look through the Cookbook, find a matching recipe, copy, paste, run within

import PySimpleGUI as sg

button, (filename,) = sg.Window('Get filename example'). Layout([[sg.Text('Filename')], [sg.I

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

minutes. This is the process PySimpleGUI was designed to facilitate.

PySimpleGUI wraps tkinter so that you get all the same widgets as you would tkinter, but you interact with them
in a more friendly way. It does the layout and boilerplate code for you and presents you with a simple, efficient
interface.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Perhaps you're looking for a way to interact with your Raspberry Pi in a more friendly way. The same for
shown as on Pi (roughly the same)

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

In addition to a primary GUI, you can add a Progress Meter to your code with ONE LINE of code. Slide this line
into any of your for loops and get a nice meter:

OneLineProgressMeter('My meter title', current_value, max value, 'key')

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

You can build an async media player GUI with custom buttons in 30 lines of code.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

How about embedding a game inside of a GUI? This game of Pong is written in tkinter and then dropped into
the PySimpleGUI window creating a game that has an accompanying GUI.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Combining PySimpleGUI with PyInstaller creates something truly remarkable and special, a Python program
that looks like a Windows WinForms application. This application with working menu was created in 20 lines of
Python code. It is a single .EXE file that launches straight into the screen you see. And more good news, the
only icon you see on the taskbar is the window itself... there is no pesky shell window.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Background I was frustrated by having to deal with the dos prompt when I had a powerful Windows machine
right in front of me. Why is it SO difficult to do even the simplest of input/output to a window in Python??

There are a number of 'easy to use' Python GUIs, but they were too limited for my requirements. PySimpleGUI
aims for the same simplicity found in packages like EasyGUI and WxSimpleGUI , both really handy but
limited, and adds the ability to define your own layouts. This ability to make your own windows using a large
palette of widgets is but one difference between the existing "simple" packages and PySimpleGUI .

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

With a simple GUI, it becomes practical to "associate" .py files with the python interpreter on Windows. Double
click a py file and up pops a GUI window, a more pleasant experience than opening a dos Window and typing a
command line.

The PySimpleGUI package is focused on the developer.

Create a custom GUI with as little and as simple code as possible.

This was the primary focus used to create PySimpleGUI.

"Do it in a Python-like way"

was the second.

Features
While simple to use, PySimpleGUI has significant depth to be explored by more advanced programmers. The
feature set goes way beyond the requirements of a beginner programmer, and into the required features
needed for complex GUIs.

Features of PySimpleGUI include:

 Support for Python versions 2.7 and 3

 Text

 Single Line Input

 Buttons including these types:

 File Browse

 Files Browse

 Folder Browse

 SaveAs

 Non-closing return

 Close window

 Realtime

 Calendar chooser

 Color chooser

 Checkboxes

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

 Radio Buttons

 Listbox

 Option Menu

 Slider

 Graph

 Frame with title

 Icons

 Multi-line Text Input

 Scroll-able Output

 Images

 Tables

 Trees

 Progress Bar Async/Non-Blocking Windows

 Tabbed windows

 Persistent Windows

 Redirect Python Output/Errors to scrolling window

 'Higher level' APIs (e.g. MessageBox, YesNobox, ...)

 Single-Line-Of-Code Proress Bar & Debug Print

 Complete control of colors, look and feel

 Selection of pre-defined palettes

 Button images

 Return values as dictionary

 Set focus

 Bind return key to buttons

 Group widgets into a column and place into window anywhere

 Scrollable columns

 Keyboard low-level key capture

 Mouse scroll-wheel support

 Get Listbox values as they are selected

 Get slider, spinner, combo as they are changed

 Update elements in a live window

 Bulk window-fill operation

 Save / Load window to/from disk

 Borderless (no titlebar) windows

 Always on top windows

 Menus with ALT-hotkey

 Tooltips

 Clickable links

 No async programming required (no callbacks to worry about)

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

An example of many widgets used on a single window. A little further down you'll find the 21 lines of code
required to create this complex window. Try it if you don't believe it. Install PySimpleGUI then :

Start Python, copy and paste the code below into the >>> prompt and hit enter.
This will pop up...

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Design Goals

import PySimpleGUI as sg

layout = [[sg.Text('All graphic widgets in one window!', size=(30, 1), font=("Helvetica", 25)

 [sg.Text('Here is some text.... and a place to enter text')],

 [sg.InputText()],

 [sg.Checkbox('My first checkbox!'), sg.Checkbox('My second checkbox!', default=True)],

 [sg.Radio('My first Radio! ', "RADIO1", default=True), sg.Radio('My second Radio!', "R

 [sg.Multiline(default_text='This is the default Text shoulsd you decide not to type anythi

[sg.InputCombo(['Combobox 1', 'Combobox 2'], size=(20, 3)),

 sg.Slider(range=(1, 100), orientation='h', size=(35, 20), default_value=85)],

[sg.Listbox(values=['Listbox 1', 'Listbox 2', 'Listbox 3'], size=(30, 6)),

 sg.Slider(range=(1, 100), orientation='v', size=(10, 20), default_value=25),

 sg.Slider(range=(1, 100), orientation='v', size=(10, 20), default_value=75),

 sg.Slider(range=(1, 100), orientation='v', size=(10, 20), default_value=10)],

[sg.Text('_' * 100, size=(70, 1))],

[sg.Text('Choose Source and Destination Folders', size=(35, 1))],

[sg.Text('Source Folder', size=(15, 1), auto_size_text=False, justification='right'), sg.Inpu

 sg.FolderBrowse()],

[sg.Text('Destination Folder', size=(15, 1), auto_size_text=False, justification='right'), sg

 sg.FolderBrowse()],

[sg.Submit(), sg.Cancel(), sg.Button('Customized', button_color=('white', 'green'))]]

button, values = sg.Window('Everything bagel', auto_size_text=True, default_element_size=(40

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Copy, Paste, Run.

PySimpleGUI's goal with the API is to be easy on the programmer, and to function in a Python-like way.
Since GUIs are visual, it was desirable for the code to visually match what's on the screen. By providing a
significant amount of documentation and an easy to use Cookbook, it's possible to see your first GUI within 5
minutes of beginning the installation.

Be Pythonic

Be Pythonic... Attempted to use language constructs in a natural way and to exploit some of Python's
interesting features. Python's lists and optional parameters make PySimpleGUI work smoothly.

windows are represented as Python lists.
A window is a list of rows

A row is a list of elements
Return values are a list of button presses and input values.
Return values can also be represented as a dictionary
The SDK calls collapse down into a single line of Python code that presents a custom GUI and returns
values
Linear programming instead of callbacks

Lofty Goals

Change Python

The hope is not that this package will become part of the Python Standard Library.

The hope is that Python will become the go-to language for creating GUI programs that run on Windows, Mac,
and Linux for all levels of developer.

The hope is that beginners that are interested in graphic design will have an easy way to express themselves,
right from the start of their Python experience.

There is a noticeable gap in the Python GUI solution. Fill that gap and who knows what will happen.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Maybe there's no "there there". Or maybe a simple GUI API will enable Python to dominate yet another
computing discipline like it has so many others. This is my attempt to find out.

Getting Started with PySimpleGUI
Installing Python 3
pip install --upgrade PySimpleGUI

On some systems you need to run pip3.

pip3 install --upgrade PySimpleGUI

On a Raspberry Pi, this is should work:

sudo pip3 install --upgrade pysimplegui

Some users have found that upgrading required using an extra flag on the pip --no-cache-dir .

pip install --upgrade --no-cache-dir

On some versions of Linux you will need to first install pip. Need the Chicken before you can get the Egg (get
it... Egg?)

sudo apt install python3-pip

If for some reason you are unable to install using pip , don't worry, you can still import PySimpleGUI by
downloading the file PySimleGUI.py and placing it in your folder along with the application that is importing it.

tkinter is a requirement for PySimpleGUI (the only requirement). Some OS variants, such as Ubuntu, do
not some with tkinter already installed. If you get an error similar to:

ImportError: No module named tkinter

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

then yosudou need to install tkinter . Be sure and get the Python 3 version. ` sudo apt-get install
python3-tk

Installing for Python 2.7
pip install --upgrade PySimpleGUI27 or pip2 install --upgrade PySimpleGUI27

You may need to also install "future" for version 2.7

pip install future

or pip2 install future

Python 2.7 support is relatively new and the bugs are still being worked out. I'm unsure what may need to be
done to install tkinter for Python 2.7. Will update this readme when more info is available

Like above, you may have to install either pip or tkinter. To do this on Python 2.7:

sudo apt install python-pip

sudo apt install python-tkinter

Testing your installation
Once you have installed, or copied the .py file to your app folder, you can test the installation using python. At
the command prompt start up Python.

Instructions for Python 2.7:

python

>>> import PySimpleGUI27

>>> PySimpleGUI27.main()

Instructions for Python 3:

python3

>>> import PySimpleGUI

>>> PySimpleGUI.main()

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

You will see a sample window in the center of your screen. If it's not installed correctly you are likely to get an
error message during one of those commands

Here is the window you should see:

Prerequisites
Python 2.7 or Python 3 tkinter

PySimpleGUI Runs on all Python3 platforms that have tkinter running on them. It has been tested on Windows,
Mac, Linux, Raspberry Pi. Even runs on pypy3 .

EXE file creation
If you wish to create an EXE from your PySimpleGUI application, you will need to install PyInstaller . There
are instructions on how to create an EXE at the bottom of this ReadMe

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Using - Python 3
To use in your code, simply import.... import PySimpleGUI as sg

Then use either "high level" API calls or build your own windows.

sg.Popup('This is my first Popup')

Yes, it's just that easy to have a window appear on the screen using Python. With PySimpleGUI, making a
custom window appear isn't much more difficult. The goal is to get you running on your GUI within minutes, not
hours nor days.

Using - Python 2.7
Those using Python 2.7 will import a different module name import PySimpleGUI27 as sg

Code Samples Assume Python 3
While all of the code examples you will see in this Readme and the Cookbook assume Python 3 and thus have
an import PySimpleGUI at the top, you can run all of this code on Python 2.7 by changing the import
statement to import PySimpleGUI27

APIs
Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

PySimpleGUI can be broken down into 2 types of API's: * High Level single call functions (The Popup calls) *
Custom window functions

Python Language Features
There are a number of Python language features that PySimpleGUI utilizes heavily for API access that should
be understood... * Variable number of arguments to a function call * Optional parameters to a function call *
Dictionaries

Variable Number of Arguments
The "High Level" API calls that output values take a variable number of arguments so that they match a "print"
statement as much as possible. The idea is to make it simple for the programmer to output as many items as
desired and in any format. The user need not convert the variables to be output into the strings. The
PySimpleGUI functions do that for the user.

sg.Popup('Variable number of parameters example', var1, var2, "etc")

Each new item begins on a new line in the Popup

Optional Parameters to a Function Call
This feature of the Python language is utilized heavily as a method of customizing windows and window
Elements. Rather than requiring the programmer to specify every possible option for a widget, instead only the
options the caller wants to override are specified.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Here is the function definition for the Popup function. The details aren't important. What is important is seeing
that there is a long list of potential tweaks that a caller can make. However, they don't have to be specified on
each and every call.

def Popup(*args,

 button_color=None,

 button_type=MSG_BOX_OK,

 auto_close=False,

 auto_close_duration=None,

 icon=DEFAULT_WINDOW_ICON,

 line_width=MESSAGE_BOX_LINE_WIDTH,

 font=None):

If the caller wanted to change the button color to be black on yellow, the call would look something like this:

sg.Popup('This box has a custom button color', button_color=('black', 'yellow'))

Dictionaries
Dictionaries are used by more advanced PySimpleGUI users. You'll know that dictionaries are being used if you
see a key parameter on any Element. Dictionaries are used in 2 ways: 1. To identify values when a window is
read 2. To identify Elements so that they can be "updated"

High Level API Calls - Popup's

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

"High level calls" are those that start with "Popup". They are the most basic form of communications with the
user. They are named after the type of window they create, a pop-up window. These windows are meant to be
short lived while, either delivering information or collecting it, and then quickly disappearing.

Popup Output
Think of the Popup call as the GUI equivalent of a print statement. It's your way of displaying results to a
user in the windowed world. Each call to Popup will create a new Popup window.

Popup calls are normally blocking. your program will stop executing until the user has closed the Popup
window. A non-blocking window of Popup discussed in the async section.

Just like a print statement, you can pass any number of arguments you wish. They will all be turned into strings
and displayed in the popup window.

There are a number of Popup output calls, each with a slightly different look (e.g. different button labels).

The list of Popup output functions are

Popup

PopupOk

PopupYesNo

PopupCancel

PopupOkCancel

PopupError

PopupTimed, PopupAutoClose

PopupNoWait, PopupNonBlocking

The trailing portion of the function name after Popup indicates what buttons are shown. PopupYesNo shows a
pair of button with Yes and No on them. PopupCancel has a Cancel button, etc.

While these are "output" windows, they do collect input in the form of buttons. The Popup functions return the
button that was clicked. If the Ok button was clicked, then Popup returns the string 'Ok'. If the user clicked the X
button to close the window, then the button value returned is None .

The function PopupTimed or PopupAutoClose are popup windows that will automatically close after come
period of time.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Here is a quick-reference showing how the Popup calls look.

sg.Popup('Popup') - Shows OK button

sg.PopupOk('PopupOk') - Shows OK button

sg.PopupYesNo('PopupYesNo') - Shows Yes and No buttons

sg.PopupCancel('PopupCancel') - Shows Cancelled button

sg.PopupOkCancel('PopupOkCancel') - Shows Ok and Cancel buttons

sg.PopupError('PopupError') - Shows red error button

sg.PopupTimed('PopupTimed') - Automatically closes

sg.PopupAutoClose('PopupAutoClose') - Same as PopupTimed

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Popup(*args, Variable number of arguments you want to display

 button_color=None, Color of buttons (text_color, background_color)

 background_color=None, Color of background

 text_color=None, Color of text

 button_type=POPUP_BUTTONS_OK, Type of button layout

 auto_close=False, If True window will automatically close

 auto_close_duration=None, Number of seconds for autoclose

 non_blocking=False, If True returns immediately

 icon=DEFAULT_WINDOW_ICON, Icon to use on the taskbar

 line_width=None, Width of lines in characters

 font=None, Font to use for characters

 no_titlebar=False, If True no titlebar will be shown

 grab_anywhere=False, If True can move window by grabbing anywhere

 keep_on_top=False, If True window will be on top of other windows

 location=(None,None)): (x,y) coordinates to show the window

The other output Popups are variations on parameters. Usually the button_type parameter is the primary one
changed.

The choices for button_type are:

POPUP_BUTTONS_YES_NO

POPUP_BUTTONS_CANCELLED

POPUP_BUTTONS_ERROR

POPUP_BUTTONS_OK_CANCEL

POPUP_BUTTONS_OK

POPUP_BUTTONS_NO_BUTTONS

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Note that you should not call Popup yourself with different button_types. Rely on the Popup function named
that sets that value for you. For example PopupYesNo will set the button type to POPUP_BUTTONS_YES_NO
for you.

Scrolled Output
There is a scrolled version of Popups should you have a lot of information to display.

sg.PopupScrolled(my_text)

The PopupScrolled will auto-fit the window size to the size of the text. Specify None in the height field of a
size parameter to get auto-sized height.

This call will create a scrolled box 80 characters wide and a height dependent upon the number of lines of text.

sg.PopupScrolled(my_text, size=(80, None))

Note that the default max number of lines before scrolling happens is set to 50. At 50 lines the scrolling will
begin.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

PopupNoWait
The Popup call PopupNoWait or PopupNonBlocking will create a popup window and then immediately return
control back to you. All other popup functions will block, waiting for the user to close the popup window.

This function is very handy for when you're debugging and want to display something as output but don't want
to change the programs's overall timing by blocking. Think of it like a print statement. There are no return
values on one of these Popups.

Popup Input
There are Popup calls for single-item inputs. These follow the pattern of Popup followed by Get and then
the type of item to get. There are 3 of these input Popups to choose from, each with settings enabling
customization.

PopupGetString - get a single line of text
PopupGetFile - get a filename
PopupGetFolder - get a folder name

Use these Popups instead of making a custom window to get one data value, call the Popup input function to
get the item from the user. If you find the parameters are unable to create the kind of window you are looking
for, then it's time for you to create your own window.

PopupGetText
Use this Popup to get a ssingle line of text from the user.

PopupGetText(message,The message you wish to display with the input field

 default_text='', Text to initially fill into the input field

 password_char='', Passwork character if this is a password field

 size=(None,None), Size of the window

 button_color=None, Color to use for buttons (foreground, background)

 background_color=None, Background color for window

 text_color=None, Text color for window

 icon=DEFAULT_WINDOW_ICON, Icon to display on taskbar

 font=None, Font to use for text

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

 no_titlebar=False, If True no titlebar will be shown

 grab_anywhere=False, If True can grab anywhere to move the window

 keep_on_top=False, If True window will stay on top of other windows

 location=(None,None)) Location on screen to display window

import PySimpleGUI as sg

text = sg.PopupGetText('Title', 'Please input something')

sg.Popup('Results', 'The value returned from PopupGetText', text)

PopupGetFile

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Gets a filename from the user. There are options to configure the type of dialog box to show. Normally an
"Open File" dialog box is shown

PopupGetFile(message, Message to show in the window

 default_path='', Path browsing should start from

 default_extension='', Which filetype is the default

 save_as=False, Determines which dialog box stype to show

 file_types=(("ALL Files", "*.*"),), Which filetypes are displayed

 no_window=False, if True no window is displayed except the dialog box

 size=(None,None), Size of window

 button_color=None, Color of buttons

 background_color=None, Color of window background

 text_color=None, Color of text in window

 icon=DEFAULT_WINDOW_ICON, Icon to show on taskbar

 font=None, Font to use

 no_titlebar=False, If True does not display a titlebar

 grab_anywhere=False, if True can grab window anywhere to move it

 keep_on_top=False, if True window will be on top of others

 location=(None,None)) Location on screen to show window

If configured as an Open File Popup then (save_as is not True) the dialog box will look like this

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

If you set the parameter save_As to True, then the dialog box looks like this:

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

If you choose a filename that already exists, you'll get a warning popup box asking if it's OK. You can also
specify a file that doesn't exist. With an "Open" dialog box you cannot choose a non-existing file.

A typical call produces this window.

text = sg.PopupGetFile('Please enter a file name')

sg.Popup('Results', 'The value returned from PopupGetFile', text)

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

PopupGetFolder
The window created to get a folder name looks the same as the get a file name. The difference is in what the
browse button does. PopupGetFile shows an Open File dialog box while PopupGetFolder shows an
Open Folder dialog box.

PopupGetFolder(message, Message to display in window

 default_path='', Path to start browsing

 no_window=False, If True no window will be shown

 size=(None,None), Size of window

 button_color=None, Color of buttons

 background_color=None, Background color of window

 text_color=None, Color of window text

 icon=DEFAULT_WINDOW_ICON, Icon to show on taskbar

 font=None, Font to use for window

 no_titlebar=False, If True no titlebar will be shown

 grab_anywhere=False, If True can grab anywhere on window to move

 keep_on_top=False, If True window will be on top

 location=(None, None)) Location on screen to create window

This is a typpical call

text = sg.PopupGetFolder('Please enter a folder name')

sg.Popup('Results', 'The value returned from PopupGetFolder', text)

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Progress Meters!
We all have loops in our code. 'Isn't it joyful waiting, watching a counter scrolling past in a text window? How
about one line of code to get a progress meter, that contains statistics about your code?

OneLineProgressMeter(title,

 current_value,

 max_value,

 key,

 *args,

 orientation=None,

 bar_color=DEFAULT_PROGRESS_BAR_COLOR,

 button_color=None,

 size=DEFAULT_PROGRESS_BAR_SIZE,

 border_width=DEFAULT_PROGRESS_BAR_BORDER_WIDTH):

Here's the one-line Progress Meter in action!

for i in range(1,10000):

 sg.OneLineProgressMeter('My Meter', i+1, 10000, 'key','Optional message')

That line of code resulted in this window popping up and updating.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

A meter AND fun statistics to watch while your machine grinds away, all for the price of 1 line of code. With a
little trickery you can provide a way to break out of your loop using the Progress Meter window. The cancel
button results in a False return value from OneLineProgressMeter . It normally returns True .

Be sure and add one to your loop counter so that your counter goes from 1 to the max value. If you do not
add one, your counter will never hit the max value. Instead it will go from 0 to max-1.

Debug Output
Another call in the 'Easy' families of APIs is EasyPrint . It will output to a debug window. If the debug window
isn't open, then the first call will open it. No need to do anything but stick a 'print' call in your code. You can
even replace your 'print' calls with calls to EasyPrint by simply sticking the statement

print = sg.EasyPrint

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

at the top of your code. There are a number of names for the same EasyPrint function. Print is one of the
better ones to use as it's easy to remember. It is simply print with a capital P.

import PySimpleGUI as sg

for i in range(100):

 sg.Print(i)

Or if you didn't want to change your code:

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

import PySimpleGUI as sg

print=sg.Print

for i in range(100):

 print(i)

Just like the standard print call, EasyPrint supports the sep and end keyword arguments. Other names
that can be used to call EasyPrint include Print , eprint , If you want to close the window, call the
function EasyPrintClose .

You can change the size of the debug window using the SetOptions call with the debug_win_size
parameter.

A word of caution. There are known problems when multiple PySimpleGUI windows are opened. If you open
one of these debug windows, if you close it using the Quit button, it can have the side-effect of causing other
visible windows to also close. It's a known architectural issue.

Custom window API Calls (Your First
window)
This is the FUN part of the programming of this GUI. In order to really get the most out of the API, you should
be using an IDE that supports auto complete or will show you the definition of the function. This will make
customizing go smoother.

This first section on custom windows is for your typical, blocking, non-persistant window. By this I mean, when
you "show" the window, the function will not return until the user has clicked a button or closed the window.
When this happens, the window will be automatically closed.

Two other types of windows exist. 1. Persistent window - rather than closing on button clicks, the show window
function returns and the window continues to be visible. This is good for applications like a chat window. 2.
Asynchronous window - the trickiest of the lot. Great care must be exercised. Examples are an MP3 player or
status dashboard. Async windows are updated (refreshed) on a periodic basis.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

It's both not enjoyable nor helpful to immediately jump into tweaking each and every little thing available to you.

The window Designer
The good news to newcomers to GUI programming is that PySimpleGUI has a window designer. Better yet, the
window designer requires no training, no downloads, and everyone knows how to use it.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

It's a manual process, but if you follow the instructions, it will take only a minute to do and the result will be a
nice looking GUI. The steps you'll take are: 1. Sketch your GUI on paper 2. Divide your GUI up into rows 3.
Label each Element with the Element name 4. Write your Python code using the labels as pseudo-code

Let's take a couple of examples.

Enter a number.... Popular beginner programs are often based on a game or logic puzzle that requires the
user to enter something, like a number. The "high-low" answer game comes to mind where you try to guess the
number based on high or low tips.

Step 1- Sketch the GUI

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Step 2 - Divide into rows

Step 3 - Label elements

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Step 4 - Write the code The code we're writing is the layout of the GUI itself. This tutorial only focuses on
getting the window code written, not the stuff to display it, get results.

We have only 1 element on the first row, some text. Rows are written as a "list of elements", so we'll need [] to
make a list. Here's the code for row 1

[sg.Text('Enter a number')]

Row 2 has 1 elements, an input field.

[sg.Input()]

Row 3 has an OK button

[sg.OK()]

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Now that we've got the 3 rows defined, they are put into a list that represents the entire window.

layout = [[sg.Text('Enter a Number')],

 [sg.Input()],

 [sg.OK()]]

Finally we can put it all together into a program that will display our window.

import PySimpleGUI as sg

layout = [[sg.Text('Enter a Number')],

 [sg.Input()],

 [sg.OK()]]

button, (number,) = sg.Window('Enter a number example').Layout(layout).Read()

sg.Popup(button, number)

Example 2 - Get a filename
Let's say you've got a utility you've written that operates on some input file and you're ready to use a GUI to
enter than filename rather than the command line. Follow the same steps as the previous example - draw your
window on paper, break it up into rows, label the elements.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Writing the code for this one is just as straightforward. There is one tricky thing, that browse for a file button.
Thankfully PySimpleGUI takes care of associating it with the input field next to it. As a result, the code looks
almost exactly like the window on the paper.

import PySimpleGUI as sg

layout = [[sg.Text('Filename')],

 [sg.Input(), sg.FileBrowse()],

 [sg.OK(), sg.Cancel()]]

button, (number,) = sg.Window('Get filename example').Layout(layout).Read()

sg.Popup(button, number)

Read on for detailed instructions on the calls that show the window and return your results.

Copy these design patterns!
All of your PySimpleGUI programs will utilize one of these 2 design patterns depending on the type of window
you're implementing.

Pattern 1 - Read into list or dictionary (The Most
Common Pattern)
This will be the most common pattern you'll follow if you are not using an "event loop" (not reading the window
multiple times)

It's unusual to assign the values returned from the read call directly into user variables. Usually the variables
are grouped together into a list or dictionary of multiple return values.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

import PySimpleGUI as sg

window_rows = [[sg.Text('SHA-1 and SHA-256 Hashes for the file')],

 [sg.InputText(), sg.FileBrowse()],

 [sg.Submit(), sg.Cancel()]]

window = sg.Window('SHA-1 & 256 Hash').Layout(window_rows)

button, values = window.Read()

source_filename = values[0]

Pattern 2 - Persistent window (multiple reads using
an event loop)
Some of the more advanced programs operate with the window remaining visible on the screen. Input values
are collected, but rather than closing the window, it is kept visible acting as a way to both output information to
the user and gather input data.

This code will present a window and will print values until the user clicks the exit button or closes window using
an X.

import PySimpleGUI as sg

layout = [[sg.Text('Persistent window')],

 [sg.Input()],

 [sg.RButton('Read'), sg.Exit()]]

window = sg.Window('Window that stays open').Layout(layout)

while True:

 button, values = window.Read()

 if button is None or button == 'Exit':

 break

 print(button, values)

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

How GUI Programming in Python Should Look? At least for
beginners ?
While one goal was making it simple to create a GUI another just as important goal was to do it in a Pythonic
manner. Whether it achieved this goal is debatable, but it was an attempt just the same.

The key to custom windows in PySimpleGUI is to view windows as ROWS of Elements. Each row is specified
as a list of these Elements. Put the rows together and you've got a window. This means the GUI is defined as a
series of Lists, a Pythonic way of looking at things.

Let's dissect this little program ```python import PySimpleGUI as sg

layout = [[sg.Text('Rename files or folders')],

 [sg.Text('Source for Folders', size=(15, 1)), sg.InputText(), sg.FolderBrowse()],

 [sg.Text('Source for Files ', size=(15, 1)), sg.InputText(), sg.FolderBrowse()],

 [sg.Submit(), sg.Cancel()]]

window = sg.Window('Rename Files or Folders')

button, values = window.Layout(layout).Read()

```

Let's agree the window has 4 rows.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


The first row only has text that reads Rename files or folders

The second row has 3 elements in it. First the text Source for Folders , then an input field, then a browse
button.

Now let's look at how those 2 rows and the other two row from Python code:

layout = [[sg.Text('Rename files or folders')], 

          [sg.Text('Source for Folders', size=(15, 1)), sg.InputText(), sg.FolderBrowse()], 

          [sg.Text('Source for Files ', size=(15, 1)), sg.InputText(), sg.FolderBrowse()], 

          [sg.Submit(), sg.Cancel()]] 

See how the source code mirrors the layout? You simply make lists for each row, then submit that table to
PySimpleGUI to show and get values from.

And what about those return values? Most people simply want to show a window, get the input values and do
something with them. So why break up the code into button callbacks, etc, when I simply want my window's
input values to be given to me.

For return values the window is scanned from top to bottom, left to right. Each field that's an input field will
occupy a spot in the return values.

In our example window, there are 2 fields, so the return values from this window will be a list with 2 values in it.
python 

  button, values = window.Read() 

  folder_path, file_path = values

In one statement we both show the window and read the user's inputs. In the next the list of return values is
split into individual variables folder_path  and file_path .

Isn't this what a Python programmer looking for a GUI wants? Something easy to work with to get the values
and move on to the rest of the program, where the real action is taking place. Why write pages of GUI code
when the same layout can be achieved with PySimpleGUI in 3 or 4 lines of code. 4 lines or 40? Most would
choose 4.

Return values

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


As of version 2.8 there are 2 forms of return values, list and dictionary.

Return values as a list
By default return values are a list of values, one entry for each input field.

Return information from Window, PSG's primary window builder interface, is in this format:

button, (value1, value2, ...) 

Each of the Elements that are Input Elements will have a value in the list of return values. You can unpack your
GUI directly into the variables you want to use.

Or, more commonly, you can unpack the return results separately.

button, values = sg.Window('My title').Layout(window_rows).Read() 

button, value_list = window.Layout(window_rows).Read() 

value1 = value_list[0] 

value2 = value_list[1] 

     ... 

Return values as a dictionary
For windows longer than 3 or 4 fields you will want to use a dictionary to help you organize your return values.
In almost all (if not all) of the demo programs you'll find the return values being passed as a dictionary. It is not
a difficult concept to grasp, the syntax is easy to understand, and it makes for very readable code.

The most common window read statement you'll encounter looks something like this:

window = sg.Window("My title").Layout(layout).Read()

All of your return values will be stored in the variable values . When using the dictionary return values, the 
values  variable is a dictionary.

button, (filename, folder1, folder2, should_overwrite) = sg.Window('My title').Layout(window_

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


To use a dictionary, you will need to: * Mark each input element you wish to be in the dictionary with the
keyword key .

If any element in the window has a key , then all of the return values are returned via a dictionary. If some
elements do not have a key, then they are numbered starting at zero.

Let's take a look at your first dictionary-based window.

import PySimpleGUI as sg 

window = sg.Window('Simple data entry window') 

layout = [ 

          [sg.Text('Please enter your Name, Address, Phone')], 

          [sg.Text('Name', size=(15, 1)), sg.InputText('1', key='name')], 

          [sg.Text('Address', size=(15, 1)), sg.InputText('2', key='address')], 

          [sg.Text('Phone', size=(15, 1)), sg.InputText('3', key='phone')], 

          [sg.Submit(), sg.Cancel()] 

         ] 

button, values = window.Layout(layout).Read() 

sg.Popup(button, values, values['name'], values['address'], values['phone']) 

To get the value of an input field, you use whatever value used as the key  value as the index value. Thus to
get the value of the name field, it is written as

values['name'] 

You will find the key field used quite heavily in most PySimpleGUI windows unless the window is very simple.

Button Return Values
The button value from a Read call will be one of 3 values: 1. The Button's text 2. The Button's key 3. None

If a button has a key set for it when it's created, then that key will be returned. If no key is set, then the button
text is returned. If no button was clicked, but the window returned anyway, the button value is None.

None is returned when the user clicks the X to close a window.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


If your window has an event loop where it is read over and over, remember to give your user an "out". You
should always check for a None value and it's a good practice to provide an Exit button of some kind. Thus
design patterns often resemble this Event Loop:

while True: 

    button, values = window.Read() 

    if button is None or button == 'Quit': 

        break 

The Event Loop / Callback Functions
All GUIs have one thing in common, an "event loop". Usually the GUI framework runs the event loop for you,
but sometimes you want greater control and will run your own event loop. You often hear the term event loop
when discussing embedded systems or on a Raspberry Pi.

With PySimpleGUI if your window will remain open following button clicks, then your code will have an event
loop. If your program shows a single window, collects the data and then has no other GUI interaction, then you
don't need an event loop.

There's nothing mysterious about event loops... they are loops where you take care of.... wait for it..... events.
Events are things like button clicks, key strokes, mouse scroll-wheel up/down.

Let's take a Pi demo program as an example. This program shows a GUI window, gets button presses, and
uses them to control some LEDs. It loops, reading user input and doing something with it.

This little program has a typical Event Loop

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


import PySimpleGUI as sg 

layout = [[sg.Text('Click read to read the input value')], 

          [sg.Input()], 

          [sg.RButton('Read'), sg.Exit()]] 

window = sg.Window('Persistent GUI Window').Layout(layout) 

while True: 

    button, values = window.Read() 

    if button is None or button == 'Exit': 

        break 

    print(button, values) 

In the Event Loop we are reading the window and then doing a series of button compares to determine what to
do based on the button that was clicks (value of button  variable)

The way buttons are presented to the caller in PySimpleGUI is not how most GUI frameworks handle button
clicks. Most GUI frameworks, including tkinter, use callback functions, a function you define would be called
when a button is clicked. This requires you to write asynchronous code, a concept beginners often stumble on
and one that presents a barrier.

There is a more communications that have to happen between parts of your program when using callbacks.
Callbacks break apart your program's logic apart and scatter it. One of the larger hurdles for beginners to GUI
programming are these callback functions.

PySimpleGUI was specifically designed in a way so that callbacks would not be required. There is no
coordination between one function and another required. You simply read your button click and take
appropriate action at the same location in the code as when you read the button value.

Whether or not this is a "proper" design for GUI programs can be debated. It's not a terrible trade-off to run your
own event loop and having a functioning GUI application versus one that maybe never gets written because
callback functions were too much to grasp.

All Widgets / Elements
Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


This code utilizes many of the common Elements. It does not include Tabs/Tab Groups.

import PySimpleGUI as sg 

sg.ChangeLookAndFeel('GreenTan') 

# ------ Menu Definition ------ # 

menu_def = [['File', ['Open', 'Save', 'Exit', 'Properties']], 

            ['Edit', ['Paste', ['Special', 'Normal', ], 'Undo'], ], 

            ['Help', 'About...'], ] 

# ------ Column Definition ------ # 

column1 = [[sg.Text('Column 1', background_color='#F7F3EC', justification='center', size=(10,

           [sg.Spin(values=('Spin Box 1', '2', '3'), initial_value='Spin Box 1')], 

           [sg.Spin(values=('Spin Box 1', '2', '3'), initial_value='Spin Box 2')], 

           [sg.Spin(values=('Spin Box 1', '2', '3'), initial_value='Spin Box 3')]] 

layout = [ 

    [sg.Menu(menu_def, tearoff=True)], 

    [sg.Text('All graphic widgets in one window!', size=(30, 1), justification='center', font

    [sg.Text('Here is some text.... and a place to enter text')], 

    [sg.InputText('This is my text')], 

    [sg.Frame(layout=[ 

    [sg.Checkbox('Checkbox', size=(10,1)),  sg.Checkbox('My second checkbox!', default=True)]

    [sg.Radio('My first Radio!     ', "RADIO1", default=True, size=(10,1)), sg.Radio('My seco

    [sg.Multiline(default_text='This is the default Text should you decide not to type anythi

     sg.Multiline(default_text='A second multi-line', size=(35, 3))], 

    [sg.InputCombo(('Combobox 1', 'Combobox 2'), size=(20, 1)), 

     sg.Slider(range=(1, 100), orientation='h', size=(34, 20), default_value=85)], 

    [sg.InputOptionMenu(('Menu Option 1', 'Menu Option 2', 'Menu Option 3'))], 

    [sg.Listbox(values=('Listbox 1', 'Listbox 2', 'Listbox 3'), size=(30, 3)), 

     sg.Frame('Labelled Group',[[ 

     sg.Slider(range=(1, 100), orientation='v', size=(5, 20), default_value=25), 

     sg.Slider(range=(1, 100), orientation='v', size=(5, 20), default_value=75), 

     sg.Slider(range=(1, 100), orientation='v', size=(5, 20), default_value=10), 

     sg.Column(column1, background_color='#F7F3EC')]])], 

    [sg.Text('_'  * 80)], 

    [sg.Text('Choose A Folder', size=(35, 1))], 

    [sg.Text('Your Folder', size=(15, 1), auto_size_text=False, justification='right'), 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


This is a somewhat complex window with quite a bit of custom sizing to make things line up well. This is code
you only have to write once. When looking at the code, remember that what you're seeing is a list of lists. Each
row contains a list of Graphical Elements that are used to create the window.

     sg.InputText('Default Folder'), sg.FolderBrowse()], 

    [sg.Submit(tooltip='Click to submit this window'), sg.Cancel()] 

] 

window = sg.Window('Everything bagel', default_element_size=(40, 1), grab_anywhere=False).Lay

button, values = window.Read() 

sg.Popup('Title', 

         'The results of the window.', 

         'The button clicked was "{}"'.format(button), 

         'The values are', values) 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Clicking the Submit button caused the window call to return. The call to Popup resulted in this window.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Note, button value can be None . The value for button  will be the text that is displayed on the button
element when it was created. If the user closed the window using something other than a button, then 
button  will be None . It is vitally important that your code contain the proper checks for None. Always give

your users a way out of the window. Otherwise you'll end up with windows that never properly close.

You can see in the results Popup window that the values returned are a list. Each input field in the window
generates one item in the return values list. All input fields return a string  except for Check Boxes and
Radio Buttons. These return bool .

Building Custom Windows
You will find it much easier to write code using PySimpleGUI if you use an IDE such as PyCharm. The features
that show you documentation about the API call you are making will help you determine which settings you
want to change, if any. In PyCharm, two commands are particularly helpful.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Synchronous windows
The most common use of PySimpleGUI is to display and collect information from the user. The most
straightforward way to do this is using a "blocking" GUI call. Execution is "blocked" while waiting for the user to
close the GUI window/dialog box. You've already seen a number of examples above that use blocking
windows. The call to look for that will show you non-blocking windows are calls to ReadNonBlocking() . You
can read more about Async windows at the end of this document.

Window Object - Beginning a
window
The first step is to create the window object using the desired window customization.

with Window('Everything bagel', auto_size_text=True, default_element_size=(30,1)) as window: 

This is the definition of the Window object:

def Window(title, 

    default_element_size=(DEFAULT_ELEMENT_SIZE[0], DEFAULT_ELEMENT_SIZE[1]), 

    default_button_element_size = (None, None), 

    auto_size_text=None, 

    auto_size_buttons=None, 

    location=(None, None), 

    font=None, 

    button_color=None,Font=None, 

    progress_bar_color=(None,None), 

    background_color=None 

    border_depth=None, 

    auto_close=False, 

Control-Q (when cursor is on function name) brings up a box with the function definition 

Control-P (when cursor inside function call "()") shows a list of parameters and their defaul

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


    auto_close_duration=DEFAULT_AUTOCLOSE_TIME, 

    icon=DEFAULT_WINDOW_ICON, 

    force_toplevel=False 

    return_keyboard_events=False, 

    use_default_focus=True, 

    text_justification=None, 

    no_titlebar=False, 

    grab_anywhere=False 

    keep_on_top=False): 

Parameter Descriptions. You will find these same parameters specified for each Element  and some of them
in Row  specifications. The Element  specified value will take precedence over the Row  and window
values.

Window Location

   default_element_size - Size of elements in window in characters (width, height) 

   default_button_element_size - Size of buttons on this window 

   auto_size_text - Bool. True if elements should size themselves according to contents. Defa

   auto_size_buttons - Bool. True if button elements should size themselves according to thei

   location - (x,y) Location to place window in pixels 

   font - Font name and size for elements of the window 

   button_color - Default color for buttons (foreground, background). Can be text or hex 

   progress_bar_color - Foreground and background colors for progress bars 

   background_color - Color of the window background 

   border_depth - Amount of 'bezel' to put on input boxes, buttons, etc. 

   auto_close - Bool.  If True window will autoclose 

   auto_close_duration - Duration in seconds before window closes 

   icon - .ICO file that will appear on the Task Bar and end of Title Bar 

   force_top_level - Bool. If set causes a tk.Tk window to be used as primary window rather t

   return_keyboard_events - if True key presses are returned as buttons 

   use_default_focus - if True and no focus set, then automatically set a focus 

   text_justification - Justification to use for Text Elements in this window 

   no_titlebar - Create window without a titlebar 

   grab_anywhere - Grab any location on the window to move the window 

   keep_on_top - if True then window will always stop on top of other windows on the screen. 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


PySimpleGUI computes the exact center of your window and centers the window on the screen. If you want to
locate your window elsewhere, such as the system default of (0,0), if you have 2 ways of doing this. The first is
when the window is created. Use the location  parameter to set where the window. The second way of
doing this is to use the SetOptions  call which will set the default window location for all windows in the
future.

Sizes
Note several variables that deal with "size". Element sizes are measured in characters. A Text Element with a
size of 20,1 has a size of 20 characters wide by 1 character tall.

The default Element size for PySimpleGUI is (45,1) .

Sizes can be set at the element level, or in this case, the size variables apply to all elements in the window.
Setting size=(20,1)  in the window creation call will set all elements in the window to that size.

There are a couple of widgets where one of the size values is in pixels rather than characters. This is true for
Progress Meters and Sliders. The second parameter is the 'height' in pixels.

No Titlebar
Should you wish to create cool looking windows that are clean with no windows titlebar, use the no_titlebar
option when creating the window.

Be sure an provide your user an "exit" button or they will not be able to close the window! When no titlebar is
enabled, there will be no icon on your taskbar for the window. Without an exit button you will need to kill via
taskmanager... not fun.

Windows with no titlebar rely on the grab anywhere option to be enabled or else you will be unable to move the
window.

Windows without a titlebar can be used to easily create a floating launcher.

Linux users! Note that this setting has side effects for some of the other Elements. Multi-line input doesn't work
at all, for example So, use with caution.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Grab Anywhere
This is a feature unique to PySimpleGUI.

Note - there is a warning message printed out if the user closes a non-blocking window using a button with
grab_anywhere enabled. There is no harm in these messages, but it may be distressing to the user. Should
you wish to enable for a non-blocking window, simply get grab_anywhere = True when you create the window.

Always on top
To keep a window on top of all other windows on the screen, set keep_on_top = True when the window is
created. This feature makes for floating toolbars that are very helpful and always visible on your desktop.

Window Methods (things you can do with a Window object)
There are a few methods (functions) that you will see in this document that act on Windows. The ones you will
primarily be calling are:

window.Layout(layout) - Turns your definition of the Window into Window 

window.Finalize() - creates the tkinter objects for the Window. Normally you do not call this

window.Read() - Read the Windows values and get the button / key that caused the Read to retu

window.ReadNonBlocking() - Same as Read but will return right away 

window.Refresh() - Use if updating elements and want to show the updates prior to the nex Rea

window.Fill(values_dict) - Fill each Element with entry from the dictionary passed in 

window.SaveToDisk(filename) - Save the Window's values to disk 

window.LoadFromDisk(filename) - Load the Window's values from disk 

window.CloseNonBlocking() - When done, for good, reading a non-blocking window 

window.Disable() - Use to disable the window inpurt when opening another window on top of the

window.Enable() - Re-enable a Disabled window 

window.FindElement(key) - Returns the element that has a matching key value 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Window Methods
There are a number of operations you can do on a window after you've created the window. You call these after
creating your Windows object.

Layout(rows)
Call to set the window layout. Must be called prior to Read. Most likely "chained" in line with the Window
creation.

window = sg.Window('My window title').Layout(layout) 

Finalize()
Call to force a window to go through the final stages of initialization. This will cause the tkinter resources to be
allocated so that they can then be modified.

Read()
Read the Window's input values and button clicks in a blocking-fashion Returns button, values

ReadNonBlocking()
Read the Window's input values and button clicks but without blocking. It will immediately return.

Refresh()
Cause changes to the window to be displayed on the screen. Normally not needed unless the changes are
immediately required or if it's going to be a while before another call to Read.

Fill(values_dict)
Populates the windows fields with the values shown in the dictionary.

FindElement(key)
Rerturns the Element that has a matching key. If the key is not found, an Error Element is returned so that the
program will not crash should the user try to perform an "update". A Popup message will be shown

SaveToDisk(filename)
Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Saves the window's values to disk

LoadFromDisk(filename)
Fills in a window's fields based on previously saved file

GetScreenDimensions()
Returns the size (w,h) of the screen in pixels

CloseNonBlocking()
Closes a non-blocking window

Disable()
Stops a window from responding until Enable is called

Enable()
Re-enables a previously disabled window

Hide()
Completely hides a window, including removing from the taskbar

UnHide()
Restores a window hidden using Hide

Disappear()
Makes a window disappear while leaving the icon on the taskbar

Reappear()
Makes a window reappear that was previously made to disappear using Disappear()

Elements
"Elements" are the building blocks used to create windows. Some GUI APIs use the term "Widget" to describe
these graphic elements.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


 Text 

 Single Line Input 

 Buttons including these types: 

     File Browse 

     Folder Browse 

     Calendar picker 

     Date Chooser 

     Read window 

     Close window 

     Realtime 

 Checkboxes 

 Radio Buttons 

 Listbox 

 Slider 

 Multi-line Text Input 

 Scroll-able Output 

 Progress Bar 

 Option Menu 

 Menu 

 Frame 

 Column 

 Graph 

 Image 

 Table 

 Tree 

 Tab, TabGroup 

 Async/Non-Blocking Windows 

 Tabbed windows 

 Persistent Windows 

 Redirect Python Output/Errors to scrolling Window 

 "Higher level" APIs (e.g. MessageBox, YesNobox, ...) 

Common Element Parameters
Some parameters that you will see on almost all Elements are:

key - Used with window.FindElement and with return values
tooltip - Hover your mouse over the elemnt and you'll get a popup with this text

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


size - (width, height) - usually measured in characters-wide, rows-high. Sometimes they mean pixels
font - specifies the font family, size, etc
colors - Color name or #RRGGBB string
pad - Amount of padding to put around element

Tooltip
Tooltips are text boxes that popup next to an element if you hold your mouse over the top of it. If you want to be
extra kind to your window's user, then you can create tooltips for them by setting the parameter tooltip  to
some text string. You will need to supply your own line breaks / text wrapping. If you don't want to manually add
them, then take a look at the standard library package textwrap .

Tooltips are one of those "polish" items that really dress-up a GUI and show's a level of sophistication. Go
ahead, impress people, throw some tooltips into your GUI.

Size
Specifies the amount of room reserved for the Element. For elements that are character based, such a Text, it
is (# characters, # rows). Sometimes it is a pixel measurement such as the Image element. And sometimes a
mix like on the Slider element (characters long by pixels wide).

Colors
A string representing color. Anytime colors are involved, you can specify the tkinter color name such as
'lightblue' or an RGB hex value '#RRGGBB'. For buttons, the color parameter is a tuple (text color, background
color)

Pad
The amount of room around the element in pixels. The default value is (5,3) which means leave 5 pixels on
each side of the x-axis and 3 pixels on each side of the y-axis. You can change this on a global basis using a
call to SetOptions, or on an element basis.

If you want more pixels on one side than the other, then you can split the number into 2 number. If you want
200 pixels on the left side, and 3 pixels on the right, the pad would be ((200,3), 3). In this example, only the x-
axis is split.

Font

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Specifies the font family, size, and style. Font families on Windows include: Arial Courier Comic, Fixedsys
Times Verdana * Helvetica (the default I think)

If you wish to leave the font family set to the default, you can put anything not matching one of the above
names. The examples use the family 'Any'. You could use "default" if that's more clear.

There are 2 formats that can be used... a string, and a tuple Tuple - (family, size, styles) String - "Family Size
Styles"

To specify an underlined, Helvetica font with a size of 15 the values would be ('Helvetica', 15, 'underline italics')
'Helvetica 15 underline italics'

Key
If you are going to do anything beyond the basic stuff with your GUI, then you need to understand keys. Keys
are a way for you to "tag" an Element with a value that will be used to identify that element. After you put a key
in an element's definition, the values returned from Read will use that key to tell you the value. For example, if
you have an input field: Input(key='mykey') And your read looks like this: button, values = Read() Then to get
the input value from the read it would be: values['mykey'] You also use the same key if you want to call Update
on an element. Please see the section below on Updates to understand that usage.

Output Elements
Building a window is simply making lists of Elements. Each list is a row in the overall GUI dialog box. The
definition looks something like this:

layout = [ [row 1 element, row 1 element], 

           [row 2 element, row 2 element, row 2 element] ] 

The code is a crude representation of the GUI, laid out in text.

Text Element
layout = [[sg.Text('This is what a Text Element looks like')]] 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


The most basic element is the Text element. It simply displays text. Many of the 'options' that can be set for a
Text element are shared by other elements.

Text(text 

     size=(None, None) 

     auto_size_text=None 

     click_submits=None 

     relief=None 

     font=None 

     text_color=None 

     background_color=None 

     justification=None 

     pad=None 

     key=None 

     tooltip=None) 

.

Text - The text that's displayed 

size - Element's size 

click_submits - if clicked will cause a read call to return they key value as the button 

relief - relief to use around the text 

auto_size_text - Bool. Change width to match size of text 

font - Font name and size to use 

text_color - text color 

background_color - background color 

justification - Justification for the text. String - 'left', 'right', 'center' 

pad - (x,y) amount of padding in pixels to use around element when packing 

key - used to identify element.  This value will return as button if click_submits True 

tooltip - string representing tooltip 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Some commonly used elements have 'shorthand' versions of the functions to make the code more compact.
The functions T  and Txt  are the same as calling Text .

Fonts in PySimpleGUI are always in this format:

(font_name, point_size) 

The default font setting is

("Helvetica", 10) 

Color in PySimpleGUI are in one of two formats - color name or RGB value.

Individual colors are specified using either the color names as defined in tkinter or an RGB string of this format:

"#RRGGBB" 

auto_size_text A True  value for auto_size_text , when placed on Text Elements, indicates that the width
of the Element should be shrunk do the width of the text. The default setting is True.

Shortcut functions The shorthand functions for Text  are Txt  and T

Text Methods
Update

 Update(value = None, background_color=None, text_color=None, font=None) 

value - new value to set text element to background_color - new background color text_color - text color to
display font - font to use to display

Multiline Text Element
layout = [[sg.Multiline('This is what a Multi-line Text Element looks like', size=(45,5))]] 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


This Element doubles as both an input and output Element.

Multiline(default_text='', 

          enter_submits = False, 

          disabled=False, 

          autoscroll=False, 

          size=(None, None), 

          auto_size_text=None, 

          background_color=None, 

          text_color=None, 

          do_not_clear=False, 

          key=None, 

          focus=False, 

          pad=None, 

          tooltip=None) 

.

default_text - Text to display in the text box 

enter_submits - Bool. If True, pressing Enter key submits window 

size - Element's size 

auto_size_text - Bool. Change width to match size of text 

Multiline Methods

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Update(value=None, disabled=None, append=False): 

value - string to set the text field to disabled - set to True to disable the element append - rather than replacing
the current text with new text, add the new text onto the end

Output Element
Output re-routes Stdout  to a scrolled text box. It's used with Async windows. More on this later.

window.AddRow(gg.Output(size=(100,20))) 

Output(size=(None, None)) 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


.

 size - Size of element (width, height) in characters 

Input Elements
These make up the majority of the window definition. Optional variables at the Element level override the
window level values (e.g. size  is specified in the Element). All input Elements create an entry in the list of
return values. A Text Input Element creates a string in the list of items returned.

Text Input Element
layout = [[sg.InputText('Default text')]] 

  def InputText(default_text ='', 

                size=(None, None), 

                disabled=False, 

                auto_size_text=None, 

                password_char='', 

                justification=None, 

                background_color=None, 

                text_color=None, 

                font=None, 

                tooltip=None, 

                do_not_clear=False, 

                key=None, 

                focus=False, 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


                pad=None): 

''' 

.

There are two methods that can be called:

 InputText.Update(new_Value) - sets the input value 

 Input.Text(Get() - returns the current value of the field. 

Shorthand functions that are equivalent to InputText  are Input  and In

TextInput Methods
Update(value=None, disabled=None): 

Get() 

Update - Change the Element value - new value to display in field disabled - if True will disable the element

Get - Returns the current value for the element (you can get also from a call to Read)

Combo Element

 default_text - Text initially shown in the input box 

 size - (width, height) of element in characters 

 auto_size_text- Bool.  True is element should be sized to fit text 

 disabled - Bool If True the input is disabled 

 password_char - Character that will be used to replace each entered character. Setting to a 

 background_color - color to use for the input field background 

 text_color - color to use for the typed text 

 do_not_clear - Bool. Normally windows clear when read, turn off clearing with this flag. 

 key = Dictionary key to use for return values 

 focus = Bool. True if this field should capture the focus (moves cursor to this field) 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Also known as a drop-down list. Only required parameter is the list of choices. The return value is a string
matching what's visible on the GUI.

layout = [[sg.InputCombo(['choice 1', 'choice 2'])]] 

InputCombo(values,    , 

           default_value=None 

           size=(None, None) 

           auto_size_text=None 

           background_color=None 

           text_color=None 

           change_submits=False 

           disabled=False 

           key=None 

           pad=None 

           tooltip=None 

.

 values - Choices to be displayed. List of strings 

 default_value - which value should be initially chosen 

 size - (width, height) of element in characters 

 auto_size_text - Bool. True if size should fit the text length 

 background_color - color to use for the input field background 

 text_color - color to use for the typed text 

 change_submits - Bool. If set causes Read to immediately return if the selected value change

 disabled - Bool. If set will disable changes 

 key - Dictionary key to use for return values 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Shortcut functions - Combo, DropDown, Drop

Combo Methods
Update(value=None, values=None, set_to_index=None, disabled=None) 

value - change which value is current selected values - change list of choices set_to_index - change selection
to a particular choice disable - if True will disable element

Listbox Element
The standard listbox like you'll find in most GUIs. Note that the return values from this element will be a list of
results, not a single result. This is because the user can select more than 1 item from the list (if you set the
right mode).

layout = [[sg.Listbox(values=['Listbox 1', 'Listbox 2', 'Listbox 3'], size=(30, 6))]] 

 pad - (x,y) Amount of padding to put around element in pixels 

 tooltip -  Text string. If set, hovering over field will popup the text 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


     Listbox(values 

             default_values=None 

             select_mode=None 

             change_submits=False 

             bind_return_key=False 

             size=(None, None) 

             disabled = False, 

             auto_size_text=None 

             font=None 

             background_color=None 

             text_color=None 

             key=None 

             pad=None 

             tooltip=None): 

.

values - Choices to be displayed. List of strings 

select_mode - Defines how to list is to operate. 

     Choices include constants or strings: 

     Constants version: 

   LISTBOX_SELECT_MODE_BROWSE 

   LISTBOX_SELECT_MODE_EXTENDED 

   LISTBOX_SELECT_MODE_MULTIPLE 

   LISTBOX_SELECT_MODE_SINGLE - the default 

   Strings version: 

   'browse' 

   'extended' 

   'multiple' 

   'single' 

change_submits - if True, the window read will return with a button value of '' 

bind_return_key - if the focus is on the listbox and the user presses return key, or if the u

size - (width, height) of element in characters 

disapled - Bool. If True element is disabled 

auto_size_text - Bool. True if size should fit the text length 

background_color - color to use for the input field background 

font - font to use for items in list 

text_color - color to use for the typed text 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


The select_mode  option can be a string or a constant value defined as a variable. Generally speaking
strings are used for these kinds of options.

ListBoxes can cause a window to return from a Read call. If the flag change_submits is set, then when a user
makes a selection, the Read immediately returns. Another way ListBoxes can cause Reads to return is if the
flag bind_return_key is set. If True, then if the user presses the return key while an entry is selected, then the
Read returns. Also, if this flag is set, if the user double-clicks an entry it will return from the Read.

Listbox Methods
Update(values=None, disabled=None) 

SetValue(values) 

GetListValues() 

Update - Change element values - new list of choices disabled - if True disables the element

SetValue - Sets selection to one or more values

GetListValues - Return the list of values to choose from

Slider Element
Sliders have a couple of slider-specific settings as well as appearance settings. Examples include the 
orientation  and range  settings.

key - Dictionary key to use for return values and to find element 

pad - amount of padding to use when packing 

tooltip - tooltip text 

layout = [[sg.Slider(range=(1,500), default_value=222, size=(20,15), orientation='horizontal'

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


   Slider(range=(None,None), 

          default_value=None, 

          resolution=None, 

          orientation=None, 

          border_width=None, 

          relief=None, 

          change_submits=False, 

          disabled=False, 

          size=(None, None), 

          font=None, 

          background_color=None, 

          text_color=None, 

          key=None, 

          pad=None, 

          tooltip=None) 

.

  range - (min, max) slider's range 

  default_value - default setting (within range) 

  resolution - how much each 'tick' should represent. Default = 1 

  orientation - 'horizontal' or 'vertical' ('h' or 'v' work) 

  border_width - how deep the widget looks 

  relief - relief style. Values are same as progress meter relief values.  Can be a constant 

     RELIEF_RAISED= 'raised' 

     RELIEF_SUNKEN= 'sunken' 

     RELIEF_FLAT= 'flat' 

     RELIEF_RIDGE= 'ridge' 

     RELIEF_GROOVE= 'groove' 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Slider Methods
Update(self, value=None, range=(None, None), disabled=None): 

value - set current selection to value range - change range of valid values disabled - if True disables element

Radio Button Element
Creates one radio button that is assigned to a group of radio buttons. Only 1 of the buttons in the group can be
selected at any one time.

 Radio(text, 

       group_id, 

     RELIEF_SOLID = 'solid' 

   size - (width, height) of element in characters 

   disabled - Bool If True slider is disabled 

   auto_size_text - Bool. True if size should fit the text 

   background_color - color to use for the input field background 

   text_color - color to use for the typed text 

   change_submits - causes window read to immediately return if the checkbox value changes 

   key- Dictionary key to use for return values 

   tooltip - Tooltip to display when hovered over wlement 

layout =  [[sg.Radio('My first Radio!', "RADIO1", default=True), sg.Radio('My second radio!',

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


       default=False, 

       size=(None, None), 

       disabled = False, 

       auto_size_text=None, 

       font=None, 

       background_color = None, 

       text_color = None, 

       key = None, 

       pad = None, 

       tooltip = None) 

.

 text - Text to display next to button 

 group_id - Groups together multiple Radio Buttons. Can be any value 

 default - Bool.  Initial state 

 size - (width, height) size of element in characters 

 auto_size_text - Bool.  True if should size width to fit text 

 font - Font type and size for text display 

 background_color - color to use for the background 

 text_color - color to use for the text 

 key - Dictionary key to use for return values 

 pad - padding around element 

 tooltip - tooltip to show when mouse hovered over element 

Radio Button Methods
Update(value=None, disabled=None) 

value - bool - if True change to selected disabled - if True disables the element

Checkbox Element
Checkbox elements are like Radio Button elements. They return a bool indicating whether or not they are
checked.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Checkbox(text, 

         default=False, 

         size=(None, None), 

         auto_size_text=None, 

         font=None, 

         background_color = None, 

         text_color = None, 

         change_submits = False 

         disabled = False, 

         key = None, 

         pad = None, 

         tooltip = None): 

.

layout =  [[sg.Checkbox('My first Checkbox!', default=True), sg.Checkbox('My second Checkbox!

 text - Text to display next to checkbox 

 default- Bool + None.  Initial state. True = Checked, False = unchecked, None = Not availabl

 size - (width, height) size of element in characters 

 auto_size_text- Bool.  True if should size width to fit text 

 disabled - Bool. If True element is disabled 

 font- Font type and size for text display 

 background_color - color to use for the background 

 text_color - color to use for the typed text 

 change_submits - causes window read to immediately return if the checkbox value changes 

 key = Dictionary key to use for return values 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Shortcut functions - CBox, CB, Check

Checkbox Methods
Update(value=None, disabled=None) 

Get() 

Update - changes the element value - Bool if True checks the checkbox disabled - if True disables the element

Get - returns current state

Spin Element
An up/down spinner control. The valid values are passed in as a list.

layout =  [[sg.Spin([i for i in range(1,11)], initial_value=1), sg.Text('Volume level')]] 

Spin(values, 

     intiial_value=None, 

     disabled = False, 

     size=(None, None), 

     change_submits = False, 

     auto_size_text=None, 

     font=None, 

 pad - Padding around element in window 

 tooltip - text to show when mouse is hovered over element 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


     background_color = None, 

     text_color = None, 

     key = None. 

     pad = None, 

     tooltip = None): 

Parameter definitions

 values - List of valid values 

 initial_value - String with initial value 

 size - (width, height) size of element in characters 

 auto_size_text - Bool.  True if should size width to fit text 

 font - Font type and size for text display 

 disabled - Bool. If True element is disabled 

 background_color - color to use for the background 

 text_color - color to use for the typed text 

 change_submits - causes window read to immediately return if the spinner value changes 

 key = Dictionary key to use for return values 

 pad - padding around element in the window 

 tooltip - text to show when mouse hovered over element 

Spin Methods
Update(value=None, values=None, disabled=None) 

value - set the current value values - set available choices disabled - if True disables the element

Image Element
Images can be placed in your window provide they are in PNG, GIF, PPM/PGM format. JPGs cannot be shown
because tkinter does not naively support JPGs. You can use the Python Imaging Library (PIL) package to
convert your image to PNG prior to calling PySimpleGUI if your images are in JPG format.

 Image(filename=None, 

       data=None, 

       background_color=None, 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


       size=(None, None), 

       pad=None, 

       key=None, 

       tooltip=None) 

Parameter definitions

filename - file name if the image is in a file 

data - if image is in RAM (PIL format?) 

background_color - Color of background 

size - Size (Width, Height) of image in pixels 

pad - Padding around Element in the window 

key - Key used to find the element 

tooltip - text to show when mouse if hovered over image 

Image Methods
Like other Elements, the Image Element has an update method. Call Update if you want to change the image.

def Update(self, filename=None, data=None): 

Choose either a filename or in-ram data image to use to replace current image

Button Element
Buttons are the most important element of all! They cause the majority of the action to happen. After all, it's a
button press that will get you out of a window, whether it be Submit or Cancel, one way or another a button is
involved in all windows. The only exception is to this is when the user closes the window using the "X" in the
upper corner which means no button was involved.

The Types of buttons include: Folder Browse File Browse Files Browse File SaveAs File Save Close window
(normal button) Read window Realtime Calendar Chooser Color Chooser

Close window - Normal buttons like Submit, Cancel, Yes, No, etc, are "Close window" buttons. They cause the
input values to be read and then the window is closed, returning the values to the caller.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Folder Browse - When clicked a folder browse dialog box is opened. The results of the Folder Browse dialog
box are written into one of the input fields of the window.

File Browse - Same as the Folder Browse except rather than choosing a folder, a single file is chosen.

Calendar Chooser - Opens a graphical calendar to select a date.

Color Chooser - Opens a color chooser dialog

Read window - This is a window button that will read a snapshot of all of the input fields, but does not close the
window after it's clicked.

Realtime - This is another async window button. Normal button clicks occur after a button's click is released.
Realtime buttons report a click the entire time the button is held down.

Most programs will use a combination of shortcut button calls (Submit, Cancel, etc), plain buttons that close the
window, and ReadForm buttons that keep the window open but returns control back to the caller.

Sometimes there are multiple names for the same function. This is simply to make the job of the programmer
quicker and easier.

The 3 primary windows of PySimpleGUI buttons and their names are:

1. Button  = SimpleButton
2. ReadButton  = RButton  = ReadFormButton  (old style... use ReadButton instead)
3. RealtimeButton

You will find the long-form in the older programs.

The most basic Button element call to use is Button

Button(button_text='' 

       button_type=BUTTON_TYPE_CLOSES_WIN 

       target=(None, None) 

       tooltip=None 

       file_types=(("ALL Files", "*.*"),) 

       initial_folder=None 

       disabled = False 

       image_filename=None 

       image_data=None 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


       image_size=(None, None) 

       image_subsample=None 

       border_width=None 

       size=(None, None) 

       auto_size_button=None 

       button_color=None 

       default_value = None 

       font=None 

       bind_return_key=False 

       focus=False 

       pad=None 

       key=None): 

Parameters

button_text - Text to be displayed on the button 

button_type - You  should NOT be setting this directly 

target - key or (row,col) target for the button 

tooltip - tooltip text for the button 

file_types - the filetypes that will be used to match files 

initial_folder - starting path for folders and files 

disabled = Bool If True button is disabled 

image_filename - image filename if there is a button image 

image_data - in-RAM image to be displayed on button 

image_size - size of button image in pixels 

image_subsample - amount to reduce the size of the image 

border_width - width of border around button in pixels 

size - size in characters 

auto_size_button - True if button size is determined by button text 

button_color - (text color, backound color) 

default_value - initial value for buttons that hold information 

font - font to use for button text 

bind_return_key - If True the return key will cause this button to fire 

focus - if focus should be set to this button 

pad - (x,y) padding in pixels for packing the button 

key - key used for finding the element 

Pre-defined Buttons

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


These Pre-made buttons are some of the most important elements of all because they are used so much. They
all basically do the same thing, set the button text to match the function name and set the parameters to
commonly used values. If you find yourself needing to create a custom button often because it's not on this list,
please post a request on GitHub. . They include:

OK 

Ok 

Submit 

Cancel 

Yes 

No 

Exit 

Quit 

Help 

Save 

SaveAs 

FileBrowse 

FilesBrowse 

FileSaveAs 

FolderBrowse 

. layout = [[sg.OK(), sg.Cancel()]]

#### Button targets

The FileBrowse , FolderBrowse , FileSaveAs  , FilesSaveAs , CalendarButton , 
ColorChooserButton  buttons all fill-in values into another element located on the window. The target can be

a Text Element or an InputText Element. The location of the element is specified by the target  variable in the
function call.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


The Target comes in two forms. 1. Key 2. (row, column)

Targets that are specified using a key will find its target element by using the target's key value. This is the
"preferred" method.

If the Target is specified using (row, column) then it utilizes a grid system. The rows in your GUI are numbered
starting with 0. The target can be specified as a hard coded grid item or it can be relative to the button.

The (row, col) targeting can only target elements that are in the same "container". Containers are the Window,
Column and Frame Elements. A File Browse button located inside of a Column is unable to target elements
outside of that Column.

The default value for target  is (ThisRow, -1) . ThisRow  is a special value that tells the GUI to use the
same row as the button. The Y-value of -1 means the field one value to the left of the button. For a File or
Folder Browse button, the field that it fills are generally to the left of the button is most cases. (ThisRow, -1)
means the Element to the left of the button, on the same row.

If a value of (None, None)  is chosen for the target, then the button itself will hold the information. Later the
button can be queried for the value by using the button's key.

Let's examine this window as an example:

The InputText  element is located at (1,0)... row 1, column 0. The Browse  button is located at position
(2,0). The Target for the button could be any of these values:

Target = (1,0) 

Target = (-1,0) 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


The code for the entire window could be:

layout = [[sg.T('Source Folder')], 

          [sg.In()], 

          [sg.FolderBrowse(target=(-1, 0)), sg.OK()]] 

or if using keys, then the code would be:

layout = [[sg.T('Source Folder')], 

          [sg.In(key='input')], 

          [sg.FolderBrowse(target='input'), sg.OK()]] 

See how much easier the key method is?

Save & Open Buttons

There are 3 different types of File/Folder open dialog box available. If you are looking for a file to open, the 
FileBrowse  is what you want. If you want to save a file, SaveAs  is the button. If you want to get a folder

name, then FolderBrowse  is the button to use. To open several files at once, use the FilesBrowse  button.
It will create a list of files that are separated by ';'

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Calendar Buttons

These buttons pop up a calendar chooser window. The chosen date is returned as a string.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Color Chooser Buttons

These buttons pop up a standard color chooser window. The result is returned as a tuple. One of the returned
values is an RGB hex representation.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Custom Buttons Not all buttons are created equal. A button that closes a window is different that a button that
returns from the window without closing it. If you want to define your own button, you will generally do this with
the Button Element Button , which closes the window when clicked.

layout = [[sg.Button('My Button')]]

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


All buttons can have their text changed by changing the button_text  variable in the button call. It is this text
that is returned when a window is read. This text will be what tells you which button is called so make it unique.
Most of the convenience buttons (Submit, Cancel, Yes, etc) are all Buttons. Some that are not are 
FileBrowse  , FolderBrowse , FileSaveAs . They clearly do not close the window. Instead they bring up

a file or folder browser dialog box.

Button Images Now this is an exciting feature not found in many simplified packages.... images on buttons!
You can make a pretty spiffy user interface with the help of a few button images.

Your button images need to be in PNG or GIF format. When you make a button with an image, set the button
background to the same color as the background. There's a button color TRANSPARENT_BUTTON that you
can set your button color to in order for it to blend into the background. Note that this value is currently the
same as the color as the default system background on Windows.

This example comes from the Demo Media Player.py  example program. Because it's a non-blocking
button, it's defined as RButton . You also put images on blocking buttons by using Button .

Three parameters are used for button images.

Here's an example window made with button images.

sg.RButton('Restart Song', button_color=sg.TRANSPARENT_BUTTON, 

                   image_filename=image_restart, image_size=(50, 50), image_subsample=2, bord

image_filename - Filename. Can be a relative path 

image_size - Size of image file in pixels 

image_subsample - Amount to divide the size by.  2 means your image will be 1/2 the size.  3 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


You'll find the source code in the file Demo Media Player. Here is what the button calls look like to create media
player window

This is one you'll have to experiment with at this point. Not up for an exhaustive explanation.

Realtime Buttons

Normally buttons are considered "clicked" when the mouse button is let UP after a downward click on the
button. What about times when you need to read the raw up/down button values. A classic example for this is a
robotic remote control. Building a remote control using a GUI is easy enough. One button for each of the
directions is a start. Perhaps something like this:

sg.RButton('Pause', button_color=sg.TRANSPARENT_BUTTON, 

                  image_filename=image_pause, image_size=(50, 50), image_subsample=2, border_

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


This window has 2 button types. There's the normal "Simple Button" (Quit) and 4 "Realtime Buttons".

Here is the code to make, show and get results from this window:

window = sg.Window('Robotics Remote Control', auto_size_text=True) 

window_rows = [[sg.Text('Robotics Remote Control')], 

             [sg.T(' '*10), sg.RealtimeButton('Forward')], 

             [ sg.RealtimeButton('Left'), sg.T(' '*15), sg.RealtimeButton('Right')], 

             [sg.T(' '*10), sg.RealtimeButton('Reverse')], 

             [sg.T('')], 

             [sg.Quit(button_color=('black', 'orange'))] 

             ] 

window.Layout(window_rows, non_blocking=True).Read() 

Somewhere later in your code will be your main event loop. This is where you do your polling of devices, do
input/output, etc. It's here that you will read your window's buttons.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


while (True): 

    # This is the code that reads and updates your window 

    button, values = window.ReadNonBlocking() 

    if button is not None: 

        sg.Print(button) 

    if button == 'Quit'  or values is None: 

        break 

  time.sleep(.01) 

This loop will read button values and print them. When one of the Realtime buttons is clicked, the call to 
window.ReadNonBlocking  will return a button name matching the name on the button that was depressed.

It will continue to return values as long as the button remains depressed. Once released, the ReadNonBlocking
will return None for buttons until a button is again clicked.

File Types The FileBrowse  & SaveAs  buttons have an additional setting named file_types . This
variable is used to filter the files shown in the file dialog box. The default value for this setting is

FileTypes=(("ALL Files", "*.*"),) 

This code produces a window where the Browse button only shows files of type .TXT

layout =  [[sg.In() ,sg.FileBrowse(file_types=(("Text Files", "*.txt"),))]] 

The ENTER key The ENTER key is an important part of data entry for windows. There's a long tradition of the
enter key being used to quickly submit windows. PySimpleGUI implements this by tying the ENTER key to the
first button that closes or reads a window.

The Enter Key can be "bound" to a particular button so that when the key is pressed, it causes the window to
return as if the button was clicked. This is done using the bind_return_key  parameter in the button calls. If
there are more than 1 button on a window, the FIRST button that is of type Close window or Read window is
used. First is determined by scanning the window, top to bottom and left to right.

Button Methods

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Update - Change the button element value - sets default value text - sets button text button color - (text,
background) disabled - if True disables the button image_data - sets button image to in-ram image
image_filename - sets button image using a file

ProgressBar Element
The ProgressBar  element is used to build custom Progress Bar windows. It is HIGHLY recommended that
you use OneLineProgressMeter that provides a complete progress meter solution for you. Progress Meters are
not easy to work with because the windows have to be non-blocking and they are tricky to debug.

The easiest way to get progress meters into your code is to use the OneLineProgressMeter  API. This
consists of a pair of functions, OneLineProgressMeter  and OneLineProgressMeterCancel . You can
easily cancel any progress meter by calling it with the current value = max value. This will mark the meter as
expired and close the window. You've already seen OneLineProgressMeter calls presented earlier in this
readme.

sg.OneLineProgressMeter('My Meter', i+1, 1000,  'key', 'Optional message') 

The return value for OneLineProgressMeter  is: True  if meter updated correctly False  if user clicked the
Cancel button, closed the window, or vale reached the max value.

Progress Mater in Your window
Another way of using a Progress Meter with PySimpleGUI is to build a custom window with a ProgressBar
Element in the window. You will need to run your window as a non-blocking window. When you are ready to
update your progress bar, you call the UpdateBar  method for the ProgressBar  element itself.

Update(value=None, text=None, button_color=(None, None), disabled=None, image_data=None, imag

GetText() 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


import PySimpleGUI as sg 

# layout the window 

layout = [[sg.Text('A custom progress meter')], 

          [sg.ProgressBar(10000, orientation='h', size=(20, 20), key='progressbar')], 

          [sg.Cancel()]] 

# create the window` 

window = sg.Window('Custom Progress Meter').Layout(layout) 

progress_bar = window.FindElement('progressbar') 

# loop that would normally do something useful 

for i in range(10000): 

    # check to see if the cancel button was clicked and exit loop if clicked 

  button, values = window.ReadNonBlocking() 

    if button == 'Cancel'  or values == None: 

        break 

  # update bar with loop value +1 so that bar eventually reaches the maximum 

  progress_bar.UpdateBar(i + 1) 

# done with loop... need to destroy the window as it's still open 

window.CloseNonBlocking()) 

Output
The Output Element is a re-direction of Stdout. Anything "printed" will be displayed in this element.

Output(size=(None, None)) 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Here's a complete solution for a chat-window using an Async window with an Output Element

import PySimpleGUI as sg 

# Blocking window that doesn't close 

def ChatBot(): 

    layout = [[(sg.Text('This is where standard out is being routed', size=[40, 1]))], 

              [sg.Output(size=(80, 20))], 

              [sg.Multiline(size=(70, 5), enter_submits=True), 

               sg.RButton('SEND', button_color=(sg.YELLOWS[0], sg.BLUES[0])), 

               sg.Button('EXIT', button_color=(sg.YELLOWS[0], sg.GREENS[0]))]] 

  window = sg.Window('Chat Window', default_element_size=(30, 2)).Layout(layout) 

    # ---===--- Loop taking in user input and using it to query HowDoI web oracle --- # 

  while True: 

        button, value = window.Read() 

        if button == 'SEND': 

            print(value) 

        else: 

            break 

ChatBot() 

ProgressBar Methods
UpdateBar(current_count, max=None) 

current_count - sets the current value max - changes the max value

Column Element
Starting in version 2.9 you'll be able to do more complex layouts by using the Column Element. Think of a
Column as a window within a window. And, yes, you can have a Column within a Column if you want.

Columns are specified in exactly the same way as a window is, as a list of lists.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


def Column(layout - the list of rows that define the layout 

        background_color - color of background 

        size - size of visible portion of column 

        pad - element padding to use when packing 

        scrollable - bool. True if should add scrollbars 

Columns are needed when you have an element that has a height > 1 line on the left, with single-line elements
on the right. Here's an example of this kind of layout:

This code produced the above window.

import PySimpleGUI as sg 

# Demo of how columns work 

# window has on row 1 a vertical slider followed by a COLUMN with 7 rows 

# Prior to the Column element, this layout was not possible 

# Columns layouts look identical to window layouts, they are a list of lists of elements. 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


The Column Element has 1 required parameter and 1 optional (the layout and the background color). Setting
the background color has the same effect as setting the window's background color, except it only affects the
column rectangle.

Column(layout, background_color=None) 

The default background color for Columns is the same as the default window background color. If you change
the look and feel of the window, the column background will match the window background automatically.

Frame Element (Labelled Frames, Frames with a
title)

window = sg.Window('Columns')                                   # blank window 

# Column layout 

col = [[sg.Text('col Row 1')], 

       [sg.Text('col Row 2'), sg.Input('col input 1')], 

       [sg.Text('col Row 3'), sg.Input('col input 2')], 

       [sg.Text('col Row 4'), sg.Input('col input 3')], 

       [sg.Text('col Row 5'), sg.Input('col input 4')], 

       [sg.Text('col Row 6'), sg.Input('col input 5')], 

       [sg.Text('col Row 7'), sg.Input('col input 6')]] 

layout = [[sg.Slider(range=(1,100), default_value=10, orientation='v', size=(8,20)), sg.Colum

          [sg.In('Last input')], 

          [sg.OK()]] 

# Display the window and get values 

# If you're willing to not use the "context manager" design pattern, then it's possible 

# to collapse the window display and read down to a single line of code. 

button, values = sg.Window('Compact 1-line window with column').Layout(layout).Read() 

sg.Popup(button, values, line_width=200) 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Frames work exactly the same way as Columns. You create layout that is then used to initialize the Frame.

def Frame(title - the label / title to put on frame 

              layout - list of rows of elements the frame contains 

              title_color - color of the title text 

              background_color - color of background 

              title_location - locations to put the title 

              relief - type of relief to use 

              size - size of Frame in characters. Do not use if you want frame to autosize 

              font - font to use for title 

              pad - element padding  to use when packing 

              border_width - how thick the line going around frame should be 

              key - key used to location the element 

              tooltip - tooltip text 

This code creates a window with a Frame and 2 buttons.

frame_layout = [ 

                  [sg.T('Text inside of a frame')], 

                  [sg.CB('Check 1'), sg.CB('Check 2')], 

               ] 

layout = [ 

          [sg.Frame('My Frame Title', frame_layout, font='Any 12', title_color='blue')], 

          [sg.Submit(), sg.Cancel()] 

         ] 

window = sg.Window('Frame with buttons', font=("Helvetica", 12)).Layout(layout) 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Notice how the Frame layout looks identical to a window layout. A window works exactly the same way as a
Column and a Frame. They all are "container elements". Elements that contain other elements.

These container Elements can be nested as deep as you want. That's a pretty spiffy feature, right? Took a lot of
work so be appreciative. Recursive code isn't trivial.

Canvas Element
In my opinion, the tkinter Canvas Widget is the most powerful of the tkinter widget. While I try my best to
completely isolate the user from anything that is tkinter related, the Canvas Element is the one exception. It
enables integration with a number of other packages, often with spectacular results.

Matplotlib, Pyplot Integration
One such integration is with Matploplib and Pyplot. There is a Demo program written that you can use as a
design pattern to get an understanding of how to use the Canvas Widget once you get it.

def Canvas(canvas - a tkinter canvasf if you created one. Normally not set 

         background_color - canvas color 

         size - size in pixels 

         pad - element padding for packing 

         key - key used to lookup element 

         tooltip - tooltip text 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


The order of operations to obtain a tkinter Canvas Widget is:

To get a tkinter Canvas Widget from PySimpleGUI, follow these steps: Add Canvas Element to your window
Layout your window Call window.Finalize()  - this is a critical step you must not forget Find the Canvas
Element by looking up using key Your Canvas Widget Object will be the found_element.TKCanvas Draw on
your canvas to your heart's content * Call window.Read()  - Nothing will appear on your canvas until you call
Read

See Demo_Matplotlib.py  for a Recipe you can copy.

Canvas Methods
TKCanvas - not a method but a property. Returns the tkinter Canvas Widget

Graph Element
All you math fans will enjoy this Element... and all you non-math fans will enjoy it too.

I've found nothing to be less fun than dealing with a graphic's coordinate system from a GUI Framework. It's
always upside down from what I want. (0,0) is in the upper left hand corner. In short, it's a pain in the ass.

figure_x, figure_y, figure_w, figure_h = fig.bbox.bounds 

# define the window layout 

layout = [[sg.Text('Plot test')], 

          [sg.Canvas(size=(figure_w, figure_h), key='canvas')], 

          [sg.OK(pad=((figure_w / 2, 0), 3), size=(4, 2))]] 

# create the window and show it without the plot 

window = sg.Window('Demo Application - Embedding Matplotlib In PySimpleGUI').Layout(layout).F

# add the plot to the window 

fig_photo = draw_figure(window.FindElement('canvas').TKCanvas, fig) 

# show it all again and get buttons 

button, values = window.Read() 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Graph Element to the rescue. A Graph Element creates a pixel addressable canvas using YOUR coordinate
system. You get to define the units on the X and Y axis.

There are 3 values you'll need to supply the Graph Element. They are: Size of the canvas in pixels The lower
left (x,y) coordinate of your coordinate system * The upper right (x,y) coordinate of your coordinate system

After you supply those values you can scribble all of over your graph by creating Graph Figures. Graph Figures
are created, and a Figure ID is obtained by calling: DrawCircle DrawLine DrawPoint DrawRectangle *
DrawOval

You can move your figures around on the canvas by supplying the Figure ID the x,y amount to move.

graph.MoveFigure(my_circle, 10, 10) 

This Element is relatively new and may have some parameter additions or deletions. It shouldn't break your
code however.

Graph Methods
DrawLine(self, point_from, point_to, color='black', width=1) 

DrawPoint(self, point, size=2, color='black') 

DrawCircle(self, center_location, radius, fill_color=None, line_color='black') 

DrawOval(self, top_left, bottom_right, fill_color=None, line_color=None) 

DrawArc(self, top_left, bottom_right, extent, start_angle, style=None, arc_color='black') 

DrawRectangle(self, top_left, bottom_right, fill_color=None, line_color=None) 

DrawText(self, text, location, color='black', font=None, angle=0) 

Erase(background_color) 

Update() 

def Graph( canvas_size - size of canvas in pixels 

                  graph_bottom_left - the x,y location of your coordinate system's bottom lef

                  graph_top_right - the x,y location of your coordinate system's top right po

                  background_color - color to use for background 

                  pad - element padding for pack 

                  key -  key used to lookup element 

                  tooltip - tooltip text 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Move(self, x_direction, y_direction) 

MoveFigure(self, figure, x_direction, y_direction) 

TKCanvas 

All of the Drawing methods return a "figure" that can be used move the figure

DrawLine - draws a line DrawPoint - draws a single point DrawCircle - draws a circle DrawOval - draws an oval
DrawArc - draws an arc DrawRectangle - draws a rectangle DrawText - draws text Erase - erases entire graph
Update - changes background color Move - moves everything an x,y direction MoveFigure - moves an
individual figure

Table Element
Let me say up front that the Table Element has Beta status. The reason is that some of the parameters are not
quite right and will change. Be warned one or two parameters may change. The size  parameter in particular
is gong to change. Currently the number of rows to allocate for the table is set by the height parameter of size.
The problem is that the width is not used. The plan is to instead have a parameter named number_of_rows
or something like it.

def Table(values - Your table's array 

          headings - list of strings representing your headings, if you have any 

          visible_column_map - list of bools. If True, column in that position is shown.  Def

          col_widths - list of column widths 

          def_col_width - default column width. defaults to 10 

          auto_size_columns - bool. If True column widths are determined by table contents 

          max_col_width - maximum width of a column. defaults to 25 

          select_mode - table rows can be selected, but doesn't currently do anything 

          display_row_numbers - bool. If True shows numbers next to rows 

          scrollable - if True table will be scrolled 

          font - font for table entries 

          justification - left, right, center 

          text_color - color of text 

          background_color - cell background color 

          size - (None, number of rows). 

          pad - element padding for packing 

          key - key used to lookup element 

          tooltip - tooltip text 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Tree Element
The Tree Element and Table Element are close cousins. Many of the parameters found in the Table Element
apply to Tree Elements. In particular the heading information, column widths, etc.

Unlike Tables there is no standard format for trees. Thus the data structure passed to the Tree Element must
be constructed. This is done using the TreeData class. The process is as follows: Get a TreeData Object
"Insert" data into the tree * Pass the filled in TreeData object to Tree Element

To "insert" data into the tree the TreeData method Insert is called.

Insert(parent_key, key, display_text, values)

To indicate insertion at the head of the tree, use a parent key of "". So, every top-level node in the tree will have
a parent node = ""

This code creates a TreeData object and populates with 3 values

class Tree(data=None - data in TreeData format 

           headings=None - list of strings representing your headings 

           visible_column_map=None - list of bools indicating which columns to display 

           col_widths=None - list of column widths 

           col0_width=10 - width of the first column which has the text data 

           def_col_width=10 - default column width 

           auto_size_columns=True - if true will autosize columns (currenly only sizes to col

           max_col_width=20 - max width for columns in characters 

           select_mode=None - not yet used 

           font=None - the display font 

           justification='right' - justification for data display 

           text_color=None- color of text to display 

           background_color=None - background color 

           num_rows=None - number of rows to display 

           pad=None - element padding 

           key=None - key for element 

           tooltip=None - tooltip 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


treedata = sg.TreeData() 

treedata.Insert("", '_A_', 'A', [1,2,3]) 

treedata.Insert("", '_B_', 'B', [4,5,6]) 

treedata.Insert("_A_", '_A1_', 'A1', ['can','be','anything']) 

Note that you can use the same values for display_text and keys. The only thing you have to watch for is that
you cannot repeat keys.

Tab and Tab Group Elements
Tabs have been a part of PySimpleGUI since the initial release. However, the initial implementation applied
tabs at the top level only. The entire window had to be tabbed. There with other limitations that came along with
that implementation. That all changed in version 3.8.0 with the new elements - Tab and TabGroup. The old
implementation of Tabs was removed in version 3.8.0 as well.

Tabs are another "Container Element". The other Container Elements include: Frame Column

You layout a Frame in exactly the same way as a Frame or Column elements, by passing in a list of elements.

How you place a Tab into a Window is different than Graph or Frame elements. You cannot place a tab directly
into a Window's layout. It much first be placed into a TabGroup. The TabGroup can then be placed into the
Window.

Let's look at this Window as an example:

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


View of second tab:

First we have the Tab layout definitions. They mirror what you see in the screen shots. Tab 1 has 1 Text
Element in it. Tab 2 has a Text and an Input Element.

tab1_layout =  [[sg.T('This is inside tab 1')]] 

tab2_layout = [[sg.T('This is inside tab 2')], 

               [sg.In(key='in')]] 

The layout for the entire window looks like this:

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


layout = [[sg.TabGroup([[sg.Tab('Tab 1', tab1_layout), sg.Tab('Tab 2', tab2_layout)]])], 

          [sg.RButton('Read')]] 

The Window layout has the TabGroup and within the tab Group are the two Tab elements.

One important thing to notice about all of these container Elements... they all take a "list of lists" at the layout.
They all have a layout that starts with [[

You will want to keep this [[ ]]  construct in your head a you're debugging your tabbed windows. It's easy to
overlook one or two necessary ['s

As mentioned earlier, the old-style Tabs were limited to being at the Window-level only. In other words, the tabs
were equal in size to the entire window. This is not the case with the "new-style" tabs. This is why you're not
going to be upset when you discover your old code no longer works with the new PySimpleGUI release. It'll be
worth the few moments it'll take to convert your code.

Check out what's possible with the NEW Tabs!

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Check out Tabs 7 and 8. We've got a Window with a Column containing Tabs 5 and 6. On Tab 6 are... Tabs 7
and 8.

As of Release 3.8.0, not all of options shown in the API definitions of the Tab and TabGroup Elements are
working. They are there as placeholders.

The definition of a TabGroup is

 TabGroup(layout, 

           title_color=None 

           background_color=None 

           font=None 

           pad=None 

           border_width=None 

           change_submits = False 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


           key=None 

           tooltip=None) 

The definition of a Tab Element is

Tab(title, 

    layout, 

    title_color=None, 

    background_color=None, 

    font=None, 

    pad=None 

    disabled=False 

    border_width=None 

    key=None 

    tooltip=None) 

Reading Tab Groups
Tab Groups now return a value when a Read returns. They return which tab is currently selected. There is also
a change_submits parameter that can be set that causes a Read to return if a Tab in that group is selected /
changed. The key or title belonging to the Tab that was switched to will be returned as the value

Tab Element Methods
Update(disabled = None) 

WARNING - This Update method does not yet work!

Colors
Starting in version 2.5 you can change the background colors for the window and the Elements.

Your windows can go from this:

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


to this... with one function call...

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


While you can do it on an element by element or window level basis, the easiest way, by far, is a call to 
SetOptions .

Be aware that once you change these options they are changed for the rest of your program's execution. All of
your windows will have that look and feel, until you change it to something else (which could be the system
default colors.

This call sets all of the different color options.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


SetOptions(background_color='#9FB8AD', 

           text_element_background_color='#9FB8AD', 

           element_background_color='#9FB8AD', 

           scrollbar_color=None, 

           input_elements_background_color='#F7F3EC', 

           progress_meter_color = ('green', 'blue') 

           button_color=('white','#475841')) 

Global Settings
Global Settings Let's have some fun customizing! Make PySimpleGUI look the way you want it to look. You
can set the global settings using the function PySimpleGUI.SetOptions . Each option has an optional
parameter that's used to set it.

SetOptions(icon=None 

        button_color=(None,None) 

        element_size=(None,None), 

        margins=(None,None), 

        element_padding=(None,None) 

        auto_size_text=None 

        auto_size_buttons=None 

        font=None 

        border_width=None 

        slider_border_width=None 

        slider_relief=None 

        slider_orientation=None 

        autoclose_time=None 

        message_box_line_width=None 

        progress_meter_border_depth=None 

        progress_meter_style=None 

        progress_meter_relief=None 

        progress_meter_color=None 

        progress_meter_size=None 

        text_justification=None 

        text_color=None 

        background_color=None 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


        element_background_color=None 

        text_element_background_color=None 

        input_elements_background_color=None 

        element_text_color=None 

        input_text_color=None 

        scrollbar_color=None, text_color=None 

        debug_win_size=(None,None) 

        window_location=(None,None) 

        tooltip_time = None 

Explanation of parameters

         icon - filename of icon used for taskbar and title bar 

         button_color - button color (foreground, background) 

         element_size - element size (width, height) in characters 

         margins - tkinter margins around outsize 

         element_padding - tkinter padding around each element 

         auto_size_text - autosize the elements to fit their text 

         auto_size_buttons - autosize the buttons to fit their text 

         font - font used for elements 

         border_width - amount of bezel or border around sunken or raised elements 

         slider_border_width - changes the way sliders look 

         slider_relief - changes the way sliders look 

         slider_orientation - changes orientation of slider 

         autoclose_time - time in seconds for autoclose boxes 

         message_box_line_width - number of characers in a line of text in message boxes 

         progress_meter_border_depth - amount of border around raised or lowered progress met

         progress_meter_style - style of progress meter as defined by tkinter 

         progress_meter_relief - relief style 

         progress_meter_color - color of the bar and background of progress meters 

         progress_meter_size - size in (characters, pixels) 

         background_color - Color of the main window's background 

         element_background_color - Background color of the elements 

         text_element_background_color - Text element background color 

         input_elements_background_color - Input fields background color 

         element_text_color - Text color of elements that have text, like Radio Buttons 

         input_text_color - Color of the text that you type in 

         scrollbar_color - Color for scrollbars (may not always work) 

         text_color - Text element default text color 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


These settings apply to all windows SetOptions . The Row options and Element options will take precedence
over these settings. Settings can be thought of as levels of settings with the window-level being the highest and
the Element-level the lowest. Thus the levels are:

window level
Row level
Element level

Each lower level overrides the settings of the higher level. Once settings have been changed, they remain
changed for the duration of the program (unless changed again).

Persistent windows (Window stays
open after button click)
There are 2 ways to keep a window open after the user has clicked a button. One way is to use non-blocking
windows (see the next section). The other way is to use buttons that 'read' the window instead of 'close' the
window when clicked. The typical buttons you find in windows, including the shortcut buttons, close the window.
These include OK, Cancel, Submit, etc. The Button Element also closes the window.

The RButton  Element creates a button that when clicked will return control to the user, but will leave the
window open and visible. This button is also used in Non-Blocking windows. The difference is in which call is
made to read the window. The Read  call will block, the ReadNonBlocking  will not block.

Asynchronous (Non-Blocking) windows
So you want to be a wizard do ya? Well go boldly!

         text_justification - justification to use on Text Elements. Values are strings - 'le

         debug_win_size - size of the Print output window 

         window_location - location on the screen (x,y) of window's top left cornder 

         tooltip_time - time in milliseconds to wait before showing a tooltip. Default is 400

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Use async windows sparingly. It's possible to have a window that appears to be async, but it is not. Please try
to find other methods before going to async windows. The reason for this plea is that async windows poll tkinter
over and over. If you do not have a sleep in your loop, you will eat up 100% of the CPU time.

When to use a non-blocking window: A media file player like an MP3 player A status dashboard that's
periodically updated Progress Meters - when you want to make your own progress meters Output using print to
a scrolled text element. Good for debugging.

If your application doesn't follow the basic design pattern at one of those, then it shouldn't be executed as a
non-blocking window.

Instead of ReadNonBlocking --- Use change_submits = True
or return_keyboard_events = True
Any time you are thinking "I want an X Element to cause a Y Element to do something", then you want to use
the change_submits  option.

Instead of polling, try options that cause the window to return to you. By using non-blocking windows, you
are polling. You can indeed create your application by polling. It will work. But you're going to be maxing out
your processor and may even take longer to react to an event than if you used another technique.

Examples

One example is you have an input field that changes as you press buttons on an on-screen keypad.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Periodically Calling ReadNonBlocking

Periodically "refreshing" the visible GUI. The longer you wait between updates to your GUI the more sluggish
your windows will feel. It is up to you to make these calls or your GUI will freeze.

There are 2 methods of interacting with non-blocking windows. 1. Read the window just as you would a normal
window 2. "Refresh" the window's values without reading the window. It's a quick operation meant to show the
user the latest values

With asynchronous windows the window is shown, user input is read, but your code keeps right on chugging.
YOUR responsibility is to call PySimpleGUI.ReadNonBlocking  on a periodic basis. Once a second or more
will produce a reasonably snappy GUI.

#### Exiting a Non-Blocking window

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


It's important to always provide a "way out" for your user. Make sure you have provided a button or some other
mechanism to exit. Also be sure to check for closed windows in your code. It is possible for a window to look
closed, but continue running your event loop.

Typically when reading a window you check if Button is None  to determine if a window was closed. With
NonBlocking windows, buttons will be None unless a button or a key was returned. The way you determine if a
window was closed in a non-blocking window is to check both the button and the values are None. Since
button is normally None, you only need to test for value is None  in your code.

The proper code to check if the user has exited the window will be a polling-loop that looks something like this:

while True: 

   button, values = window.ReadNonBlocking() 

   if values is None or button == 'Quit': 

      break 

We're going to build an app that does the latter. It's going to update our window with a running clock.

The basic flow and functions you will be calling are: Setup

   window = Window() 

   window_rows = ..... 

   window.Layout(window_rows, non_blocking=True).Read() 

Periodic refresh

window.ReadNonBlocking()   or       window.Refresh() 

If you need to close the window

window.CloseNonBlocking() 

Rather than the usual window.Layout().Read()  call, we're manually adding the rows (doing the layout) and
then showing the window. After the window is shown, you simply call window.ReadNonBlocking()  every
now and then.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


When you are ready to close the window (assuming the window wasn't closed by the user or a button click) you
simply call window.CloseNonBlocking()

Example - Running timer that updates See the sample code on the GitHub named Demo Media Player for
another example of Async windows. We're going to make a window and update one of the elements of that
window every .01 seconds. Here's the entire code to do that.

import PySimpleGUI as sg 

import time 

# window that doesn't block 

# Make a window, but don't use context manager 

window = sg.Window('Running Timer', auto_size_text=True) 

# Create the layout 

window_rows = [[sg.Text('Non-blocking GUI with updates')], 

             [sg.Text('', size=(8, 2), font=('Helvetica', 20), key='output')    ], 

             [sg.Button('Quit')]] 

# Layout the rows of the window and perform a read. Indicate the window is non-blocking! 

window.Layout(window_rows).ReadNonBlocking() 

# 

# Some place later in your code... 

# You need to perform a ReadNonBlocking on your window every now and then or 

# else it won't refresh 

# 

for i in range(1, 1000): 

    window.FindElement('output').Update('{:02d}:{:02d}.{:02d}'.format(*divmod(int(i / 100), 6

    button, values = window.ReadNonBlocking() 

    if values is None or button == 'Quit': 

        break 

    time.sleep(.01) 

else: 

    window.CloseNonBlocking() 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


What we have here is the same sequence of function calls as in the description. Get a window, add rows to it,
show the window, and then refresh it every now and then.

The new thing in this example is the call use of the Update method for the Text Element. The first thing we do
inside the loop is "update" the text element that we made earlier. This changes the value of the text field on the
window. The new value will be displayed when window.ReadNonBlocking()  is called. if you want to have
the window reflect your changes immediately, call window.Refresh() .

Note the else  statement on the for loop. This is needed because we're about to exit the loop while the
window is still open. The user has not closed the window using the X nor a button so it's up to the caller to
close the window using CloseNonBlocking .

Updating Elements (changing
elements in active window)
Persistent windows remain open and thus continue to interact with the user after the Read has returned. Often
the program wishes to communicate results (output information) or change an Element's values (such as
populating a List Element).

You can use Update to do things like: Have one Element (appear to) make a change to another Element
Disable a button, slider, input field, etc Change a button's text Change an Element's text or background color
Add text to a scrolling output window Change the choices in a list * etc

The way this is done is via an Update method that is available for nearly all of the Elements. Here is an
example of a program that uses a persistent window that is updated.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


In some programs these updates happen in response to another Element. This program takes a Spinner and a
Slider's input values and uses them to resize a Text Element. The Spinner and Slider are on the left, the Text
element being changed is on the right.

# Testing async window, see if can have a slider 

# that adjusts the size of text displayed 

import PySimpleGUI as sg 

fontSize = 12 

layout = [[sg.Spin([sz for sz in range(6, 172)], font=('Helvetica 20'), initial_value=fontSiz

           sg.Slider(range=(6,172), orientation='h', size=(10,20), 

           change_submits=True, key='slider', font=('Helvetica 20')), 

           sg.Text("Aa", size=(2, 1), font="Helvetica "  + str(fontSize), key='text')]] 

sz = fontSize 

window = sg.Window("Font size selector", grab_anywhere=False).Layout(layout) 

# Event Loop 

while True: 

    button, values= window.Read() 

    if button is None: 

        break 

    sz_spin = int(values['spin']) 

    sz_slider = int(values['slider']) 

    sz = sz_spin if sz_spin != fontSize else sz_slider 

    if sz != fontSize: 

        fontSize = sz 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Inside the event loop we read the value of the Spinner and the Slider using those Elements' keys. For example,
values['slider']  is the value of the Slider Element.

This program changes all 3 elements if either the Slider or the Spinner changes. This is done with these
statements:

    window.FindElement('text').Update(font=font) 

    window.FindElement('slider').Update(sz) 

    window.FindElement('spin').Update(sz) 

Remember this design pattern because you will use it OFTEN if you use persistent windows.

It works as follows. The call to window.FindElement  returns the Element object represented by they
provided key . This element is then updated by calling it's Update  method. This is another example of
Python's "chaining" feature. We could write this code using the long-form:

text_element = window.FindElement('text') 

text_element.Update(font=font) 

The takeaway from this exercise is that keys are key in PySimpleGUI's design. They are used to both read the
values of the window and also to identify elements. As already mentioned, they are used as targets in Button
calls.

### Updating Multiple Elements If you have a large number of Elements to update, you can call 
Window.UpdateElements() .

UpdateElements(key_list, 

                value_list)

        font = "Helvetica "  + str(fontSize) 

        window.FindElement('text').Update(font=font) 

        window.FindElement('slider').Update(sz) 

        window.FindElement('spin').Update(sz) 

print("Done.") 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


key_list  - list of keys for elements you wish to update value_list  - list of values, one for each key

Keyboard & Mouse Capture
Beginning in version 2.10 you can capture keyboard key presses and mouse scroll-wheel events. Keyboard
keys can be used, for example, to detect the page-up and page-down keys for a PDF viewer. To use this
feature, there's a boolean setting in the Window call return_keyboard_events  that is set to True in order to
get keys returned along with buttons.

Keys and scroll-wheel events are returned in exactly the same way as buttons.

For scroll-wheel events, if the mouse is scrolled up, then the button  text will be MouseWheel:Up . For
downward scrolling, the text returned is MouseWheel:Down

Keyboard keys return 2 types of key events. For "normal" keys (a,b,c, etc), a single character is returned that
represents that key. Modifier and special keys are returned as a string with 2 parts:

Key Sym:Key Code 

Key Sym is a string such as 'Control_L'. The Key Code is a numeric representation of that key. The left control
key, when pressed will return the value 'Control_L:17'

window.UpdateElements(('name', 'address', 'phone'), ('Fred Flintstone', '123 Rock Quarry Road

import PySimpleGUI as sg 

# Recipe for getting keys, one at a time as they are released 

# If want to use the space bar, then be sure and disable the "default focus" 

with sg.Window("Keyboard Test", return_keyboard_events=True, use_default_focus=False) as wind

    text_elem = sg.Text("", size=(18,1)) 

    layout = [[sg.Text("Press a key or scroll mouse")], 

              [text_elem], 

              [sg.Button("OK")]] 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


You want to turn off the default focus so that there no buttons that will be selected should you press the
spacebar.

Realtime Keyboard Capture
Use realtime keyboard capture by calling

    window.Layout(layout) 

    # ---===--- Loop taking in user input --- # 

  while True: 

        button, value = window.ReadNonBlocking() 

        if button == "OK"  or (button is None and value is None): 

            print(button, "exiting") 

            break 

        if button is not None: 

            text_elem.Update(button) 

import PySimpleGUI as sg 

with sg.Window("Realtime Keyboard Test", return_keyboard_events=True, use_default_focus=False

    layout = [[sg.Text("Hold down a key")], 

              [sg.Button("OK")]] 

    window.Layout(layout) 

    while True: 

        button, value = window.ReadNonBlocking() 

        if button == "OK": 

            print(button, value, "exiting") 

            break 

      if button is not None: 

            print(button) 

        elif value is None: 

            break 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Menus
Beginning in version 3.01 you can add a menubar to your window. You specify the menus in much the same
way as you do window layouts, with lists. Menu selections are returned as button clicks, so be aware of your
overall naming conventions. If you have an Exit button and also an Exit menu option, then you won't be able to
tell the difference when your window.Read returns. Hopefully will not be a problem.

This definition:

menu_def = [['File', ['Open', 'Save', 'Exit',]], 

            ['Edit', ['Paste', ['Special', 'Normal',], 'Undo'],], 

            ['Help', 'About...'],] 

Note the placement of ',' and of []. It's tricky to get the nested menus correct that implement cascading menus.
See how paste has Special and Normal as a list after it. This means that Paste has a cascading menu with
items Special and Normal.

They menu_def layout produced this window:

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


You have used ALT-key in other Windows programs to navigate menus. For example Alt-F+X exits the
program. The Alt-F pulls down the File menu. The X selects the entry marked Exit.

The good news is that PySimpleGUI allows you to create the same kind of menus! Your program can play with
the big-boys. And, it's trivial to do.

All that's required is for your to add an "&" in front of the letter you want to appear with an underscore. When
you hold the Alt key down you will see the menu with underlines that you marked.

One other little bit of polish you can add are separators in your list. To add a line in your list of menu choices,
create a menu entry that looks like this: '---'

This is an example Menu with underlines and a separator.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


# ------ Menu Definition ------ # 

menu_def = [['&File', ['&Open', '&Save', '---', 'Properties', 'E&xit'  ]], 

            ['&Edit', ['Paste', ['Special', 'Normal',], 'Undo'],], 

            ['&Help', '&About...'],] 

And this is the spiffy menu it produced:

Sample Applications
Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Use the example programs as a starting basis for your GUI. Copy, paste, modify and run! The demo files are:

Source File Description

Demo_All_Widgets.py Nearly all of the Elements shown in a single window

Demo_Borderless_Window.py Create clean looking windows with no border

Demo_Button_States.py One way of implementing disabling of buttons

Demo_Calendar.py Demo of the Calendar Chooser button

Demo_Canvas.py window with a Canvas Element that is updated outside of the
window

Demo_Chat.py A chat window with scrollable history

Demo_Chatterbot.py Front-end to Chatterbot Machine Learning project

Demo_Color.py How to interact with color using RGB hex values and named
colors

Demo_Columns.py Using the Column Element to create more complex windows

Demo_Compare_Files.py Using a simple GUI front-end to create a compare 2-files utility

Demo_Cookbook_Browser.py Source code browser for all Recipes in Cookbook

Demo_Dictionary.py Specifying and using return values in dictionary format

Demo_DOC_Viewer_PIL.py Display a PDF, HTML, ebook file, etc in your window

Demo_DisplayHash1and256.py Using high level API and custom window to implement a simple
display hash code utility

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Source File Description

Demo_DuplicateFileFinder.py High level API used to get a folder that is used by utility that
finds duplicate files. Uses progress meter to show progress. 2
lines of code required to add GUI and meter

Demo_Fill_Form.py How to perform a bulk-fill for a window. Saving and loading a
window from disk

Demo Font Sizer.py Demonstrates Elements updating other Elements

Demo_Func_Callback_Simulator.py For the Raspberry Pi crowd. Event loop that simulates
traditional GUI callback functions should you already have an
architecture that uses them

Demo_GoodColors.py Using some of the pre-defined PySimpleGUI individual colors

Demo_HowDoI.py This is a utility to be experienced! It will change how you code

Demo_Img_Viewer.py Display jpg, png,tiff, bmp files

Demo_Keyboard.py Using blocking keyboard events

Demo_Keyboard_Realtime.py Using non-blocking / realtime keyboard events

Demo_Machine_Learning.py A sample Machine Learning front end

Demo_Matplotlib.py Integrating with Matplotlib to create a single graph

Demo_Matplotlib_Animated.py Animated Matplotlib line graph

Demo_Matplotlib_Animated_Scatter.py Animated Matplotlib scatter graph

Demo_Matplotlib_Browser.py Browse Matplotlib gallery

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Source File Description

Demo_Media_Player.py Non-blocking window with a media player layout. Demonstrates
button graphics, Update method

Demo_MIDI_Player.py GUI wrapper for Mido MIDI package. Functional MIDI player
that controls attached MIDI devices

Demo_NonBlocking_Form.py a basic async window

Demo_OpenCV.py Integrated with OpenCV

Demo_Password_Login Password protection using SHA1

Demo_PDF_Viewer.py Submitted by a user! Previews PDF documents. Uses keyboard
input & mouse scrollwheel to navigate

Demo_Pi_LEDs.py Control GPIO using buttons

Demo_Pi_Robotics.py Simulated robot control using realtime buttons

Demo_PNG_Vierwer.py Uses Image Element to display PNG files

Demo_Progress_Meters.py Demonstrates using 2 progress meters simultaneously

Demo_Recipes.py A collection of various Recipes. Note these are not the same as
the Recipes in the Recipe Cookbook

Demo_Script_Launcher.py Demonstrates one way of adding a front-end onto several
command line scripts

Demo_Script_Parameters.py Add a 1-line GUI to the front of your previously command-line
only scripts

Demo_Tabbed_Form.py Using the Tab feature

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Source File Description

Demo_Table_Simulation.py Use input fields to display and edit tables

Demo_Timer.py Simple non-blocking window

Packages Used In Demos
While the core PySimpleGUI code does not utilize any 3rd party packages, some of the demos do. They add a
GUI to a few popular packages. These packages include: * Chatterbot * Mido * Matplotlib * PyMuPDF

Creating a Windows .EXE File
It's possible to create a single .EXE file that can be distributed to Windows users. There is no requirement to
install the Python interpreter on the PC you wish to run it on. Everything it needs is in the one EXE file,
assuming you're running a somewhat up to date version of Windows.

Installation of the packages, you'll need to install PySimpleGUI and PyInstaller (you need to install only once)

pip install PySimpleGUI 

pip install PyInstaller 

To create your EXE file from your program that uses PySimpleGUI, my_program.py , enter this command in
your Windows command prompt:

pyinstaller -wF my_program.py 

You will be left with a single file, my_program.exe , located in a folder named dist  under the folder where
you executed the pyinstaller  command.

That's all... Run your my_program.exe  file on the Windows machine of your choosing.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://github.com/gunthercox/ChatterBot
https://github.com/olemb/mido
https://matplotlib.org/
https://github.com/rk700/PyMuPDF
https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


"It's just that easy."

(famous last words that screw up just about anything being referenced)

Your EXE file should run without creating a "shell window". Only the GUI window should show up on your
taskbar.

If you get a crash with something like:

ValueError: script '.......\src\tkinter' not found 

Then try adding --hidden-import tkinter  to your command

Fun Stuff
Here are some things to try if you're bored or want to further customize

Debug Output Be sure and check out the EasyPrint (Print) function described in the high-level API section.
Leave your code the way it is, route your stdout and stderror to a scrolling window.

For a fun time, add these lines to the top of your script

import PySimpleGUI as sg 

print = sg.Print 

This will turn all of your print statements into prints that display in a window on your screen rather than to the
terminal.

Look and Feel Dial in the look and feel that you like with the SetOptions  function. You can change all of the
defaults in one function call. One line of code to customize the entire GUI. Or beginning in version 2.9 you can
choose from a look and feel using pre-defined color schemes. Call ChangeLookAndFeel with a description
string.

sg.ChangeLookAndFeel('GreenTan') 

Valid values for the description string are:

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


  GreenTan 

  LightGreen 

  BluePurple 

  Purple 

  BlueMono 

  GreenMono 

  BrownBlue 

  BrightColors 

  NeutralBlue 

  Kayak 

  SandyBeach 

  TealMono 

To see the latest list of color choices, take a look at the bottom of the PySimpleGUI.py  file where you'll find
the ChangLookAndFeel  function.

You can also combine the ChangeLookAndFeel  function with the SetOptions  function to quickly modify
one of the canned color schemes. Maybe you like the colors but was more depth to your bezels. You can dial in
exactly what you want.

ObjToString Ever wanted to easily display an objects contents easily? Use ObjToString to get a nicely
formatted recursive walk of your objects. This statement:

print(sg.ObjToSting(x)) 

And this was the output

<class '__main__.X'> 

    abc = abc 

    attr12 = 12 

    c = <class '__main__.C'> 

        b = <class '__main__.B'> 

            a = <class '__main__.A'> 

                attr1 = 1 

                attr2 = 2 

                attr3 = three 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


            attr10 = 10 

            attrx = x 

You'll quickly wonder how you ever coded without it.

Known Issues
While not an "issue" this is a stern warning

Do not attempt to call PySimpleGUI  from multiple
threads! It's tkinter  based and tkinter  has
issues with multiple threads
Progress Meters - the visual graphic portion of the meter may be off. May return to the native tkinter progress
meter solution in the future. Right now a "custom" progress meter is used. On the bright side, the statistics
shown are extremely accurate and can tell you something about the performance of your code. If you are
running 2 or more progress meters at the same time using OneLineProgressMeter , you need to close the
meter by using the "Cancel" button rather than the X

Async windows - these include the 'easy' windows ( OneLineProgressMeter  and EasyPrint/Print). If you
start overlapping having Async windows open with normal windows then things get a littler squirrelly. Still
tracking down the issues and am making it more solid every day possible. You'll know there's an issue when
you see blank window.

EasyPrint - EasyPrint is a new feature that's pretty awesome. You print and the output goes to a window, with
a scroll bar, that you can copy and paste from. Being a new feature, it's got some potential problems. There are
known interaction problems with other GUI windows. For example, closing a Print window can also close other
windows you have open. For now, don't close your debug print window until other windows are closed too.

Contributing
Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


A MikeTheWatchGuy production... entirely responsible for this code.... unless it causes you trouble in which
case I'm not at all responsible.

Versions
Version Description

1.0.9 July 10, 2018 - Initial Release

1.0.21 July 13, 2018 - Readme updates

2.0.0 July 16, 2018 - ALL optional parameters renamed from CamelCase to all_lower_case

2.1.1 July 18, 2018 - Global settings exposed, fixes

2.2.0 July 20, 2018 - Image Elements, Print output

2.3.0 July 23, 2018 - Changed form.Read return codes, Slider Elements, Listbox element. Renamed
some methods but left legacy calls in place for now.

2.4.0 July 24, 2018 - Button images. Fixes so can run on Raspberry Pi

2.5.0 July 26, 2018 - Colors. Listbox scrollbar. tkinter Progress Bar instead of homegrown.

2.6.0 July 27, 2018 - auto_size_button setting. License changed to LGPL 3+

2.7.0 July 30, 2018 - realtime buttons, window_location default setting

2.8.0 Aug 9, 2018 - New None default option for Checkbox element, text color option for all elements,
return values as a dictionary, setting focus, binding return key

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Version Description

2.9.0 Aug 16,2018 - Screen flash fix, do_not_clear  input field option, autosize_text  defaults to 
True  now, return values as ordered dict, removed text target from progress bar, rework of

return values and initial return values, removed legacy Form.Refresh() method (replaced by
Form.ReadNonBlockingForm()), COLUMN elements!!, colored text defaults

2.10.0 Aug 25, 2018 - Keyboard & Mouse features (Return individual keys as if buttons, return mouse
scroll-wheel as button, bind return-key to button, control over keyboard focus), SaveAs Button,
Update & Get methods for InputText, Update for Listbox, Update & Get for Checkbox, Get for
Multiline, Color options for Text Element Update, Progess bar Update can change max value,
Update for Button to change text & colors, Update for Image Element, Update for Slider, Form
level text justification, Turn off default focus, scroll bar for Listboxes, Images can be from
filename or from in-RAM, Update for Image). Fixes - text wrapping in buttons, msg box, removed
slider borders entirely and others

2.11.0 Aug 29, 2018 - Lots of little changes that are needed for the demo programs to work. Buttons
have their own default element size, fix for Mac default button color, padding support for all
elements, option to immediately return if list box gets selected, FilesBrowse button, Canvas
Element, Frame Element, Slider resolution option, Form.Refresh method, better text wrapping,
'SystemDefault' look and feel settin

2.20.0 Sept 4, 2018 - Some sizable features this time around of interest to advanced users. Renaming
of the MsgBox functions to Popup. Renaming GetFile, etc, to PopupGetFile. High-level
windowing capabilities start with Popup, PopupNoWait/PopupNonblocking, PopupNoButtons,
default icon, change_submits option for Listbox/Combobox/Slider/Spin/, New OptionMenu
element, updating elements after shown, system defaul color option for progress bars, new
button type (Dummy Button) that only closes a window, SCROLLABLE Columns!! (yea, playing in
the Big League now), LayoutAndShow function removed, form.Fill - bulk updates to forms,
FindElement - find element based on key value (ALL elements have keys now), no longer use
grid packing for row elements (a potentially huge change), scrolled text box sizing changed, new
look and feel themes (Dark, Dark2, Black, Tan, TanBlue, DarkTanBlue, DarkAmber, DarkBlue,
Reds, Green)

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Version Description

2.30.0 Sept 6, 2018 - Calendar Chooser (button), borderless windows, load/save form to disk

3.0.0 Sept 7, 2018 - The "fix for poor choice of 2.x numbers" release. Color Chooser (button), "grab
anywhere" windows are on by default, disable combo boxes, Input Element text justification (last
part needed for 'tables'), Image Element changes to support OpenCV?, PopupGetFile and
PopupGetFolder have better no_window option

3.01.01 Sept 10, 2018 - Menus! (sort of a big deal)

3.01.02 Step 11, 2018 - All Element.Update functions have a disabled  parameter so they can be
disabled. Renamed some parameters in Update function (sorry if I broke your code), fix for bug in
Image.Update. Wasn't setting size correctly, changed grab_anywhere logic again,added grab
anywhere option to PupupGetText (assumes disabled)

3.02.00 Sept 14, 2018 - New Table Element (Beta release), MsgBox removed entirely, font setting for
InputText Element, packing change risky change that allows some Elements to be
resized,removed command parameter from Menu Element, new function names for
ReadNonBlocking (Finalize, PreRead), change to text element autosizing and wrapping (yet
again), lots of parameter additions to Popup functions (colors, etc).

3.03.00 New feature - One Line Progress Meters, new display_row_numbers for Table Element, fixed bug
in EasyProgresssMeters (function will soon go away), OneLine and Easy progress meters set to
grab anywhere but can be turned off.

03,04.00 Sept 18, 2018 - New features - Graph Element, Frame Element, more settings exposed to Popup
calls. See notes below for more.

03.04.01 Sept 18, 2018 - See release notes

03.05.00 Sept 20, 2018 - See release notes

03.05.01 Sept 22, 2018 - See release notes

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Version Description

03.05.02 Sept 23, 2018 - See release notes

03.06.00 Sept 23, 2018 - Goodbye FlexForm, hello Window

03.08.00 Sept 25, 2018 - Tab and TabGroup Elements\

01.00.00
for 2.7

Sept 25, 2018 - First release for 2.7

03.08.04 Sept 30, 2018 - See release notes

03.09.00 Oct 1, 2018

2.7
01.01.00

Oct 1, 2018

2.7
01.01.02

Oct 8, 2018

03.09.01 Oct 8, 2018

3.9.3 &
1.1.3

Oct 11, 2018

Release Notes
2.3 - Sliders, Listbox's and Image elements (oh my!)

If using Progress Meters, avoid cancelling them when you have another window open. It could lead to future
windows being blank. It's being worked on.

New debug printing capability. sg.Print

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


2.5 Discovered issue with scroll bar on Output  elements. The bar will match size of ROW not the size of the
element. Normally you never notice this due to where on a form the Output  element goes.

Listboxes are still without scrollwheels. The mouse can drag to see more items. The mouse scrollwheel will
also scroll the list and will page up  and page down  keys.

2.7 Is the "feature complete" release. Pretty much all features are done and in the code

2.8 More text color controls. The caller has more control over things like the focus and what buttons should be
clicked when enter key is pressed. Return values as a dictionary! (NICE addition)

2.9 COLUMNS! This is the biggest feature and had the biggest impact on the code base. It was a difficult
feature to add, but it was worth it. Can now make even more layouts. Almost any layout is possible with this
addition.

.................. insert releases 2.9 to 2.30 .................

3.0 We've come a long way baby! Time for a major revision bump. One reason is that the numbers started to
confuse people the latest release was 2.30, but some people read it as 2.3 and thought it went backwards. I
kinda messed up the 2.x series of numbers, so why not start with a clean slate. A lot has happened anyway so
it's well earned.

One change that will set PySimpleGUI apart is the parlor trick of being able to move the window by clicking on
it anywhere. This is turned on by default. It's not a common way to interact with windows. Normally you have to
move using the titlebar. Not so with PySimpleGUI. Now you can drag using any part of the window. You will
want to turn this off for windows with sliders. This feature is enabled in the Window call.

Related to the Grab Anywhere feature is the no_titlebar option, again found in the call to Window. Your window
will be a spiffy, borderless window. It's a really interesting effect. Slight problem is that you do not have an icon
on the taskbar with these types of windows, so if you don't supply a button to close the window, there's no way
to close it other than task manager.

3.0.2 Still making changes to Update methods with many more ahead in the future. Continue to mess with grab
anywhere option. Needed to disable in more places such as the PopupGetText function. Any time these is text
input on a form, you generally want to turn off the grab anywhere feature.

3.2.0

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Biggest change was the addition of the Table Element. Trying to make changes so that form resizing is a
possibility but unknown if will work in the long run. Removed all MsgBox, Get* functions and replaced with
Popup functions. Popups had multiple new parameters added to change the look and feel of a popup.

3.3.0
OneLineProgressMeter function added which gives you not only a one-line solution to progress meters, but it
also gives you the ability to have more than 1 running at the same time, something not possible with the
EasyProgressMeterCall

3.4.0
Frame - New Element - a labelled frame for grouping elements. Similar to Column
Graph (like a Canvas element except uses the caller's coordinate system rather than tkinter's).
initial_folder - sets starting folder for browsing type buttons (browse for file/folder).
Buttons return key value rather than button text If a key  is specified, * OneLineProgressMeter!
Replaced EasyProgressMeter (sorry folks that's the way progress works sometimes)
Popup - changed ALL of the Popup calls to provide many more customization settings

Popup
PopupGetFolder
PopupGetFile
PopupGetText
Popup
PopupNoButtons
PopupNonBlocking
PopupNoTitlebar
PopupAutoClose
PopupCancel
PopupOK
PopupOKCancel
PopupYesNo

3.4.1
Button.GetText - Button class method. Returns the current text being shown on a button.
Menu - Tearoff option. Determines if menus should allow them to be torn off
Help - Shorcut button. Like Submit, cancel, etc

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


ReadButton - shortcut for ReadFormButton

3.5.0
Tool Tips for all elements
Clickable text
Text Element relief setting
Keys as targets for buttons
New names for buttons:
Button = SimpleButton
RButton = ReadButton = ReadFormButton
Double clickable list entries
Auto sizing table widths works now
Feature DELETED - Scaling. Removed from all elements

3.5.1
Bug fix for broken PySimpleGUI if Python version < 3.6 (sorry!)
LOTS of Readme changes

3.5.2
Made Finalize()  in a way that it can be chained
Fixed bug in return values from Frame Element contents

3.6.0
Renamed FlexForm to Window
Removed LookAndFeel capability from Mac platform.

3.8.0
Tab and TabGroup Elements - awesome new capabilities

1.0.0 Python 2.7
It's official. There is a 2.7 version of PySimpleGUI!

3.8.2
Exposed TKOut  in Output Element

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


DrawText  added to Graph Elements
Removed Window.UpdateElements
Window.grab_anywere  defaults to False

3.8.3
Listbox, Slider, Combobox, Checkbox, Spin, Tab Group - if change_submits is set, will return the
Element's key rather than ''
Added change_submits capability to Checkbox, Tab Group
Combobox - Can set value to an Index into the Values table rather than the Value itself
Warnings added to Drawing routines for Graph element (rather than crashing)
Window - can "force top level" window to be used rather than a normal window. Means that instead of
calling Tk to get a window, will call TopLevel to get the window
Window Disable / Enable - Disables events (button clicks, etc) for a Window. Use this when you open a
second window and want to disable the first window from doing anything. This will simulate a 'dialog box'
Tab Group returns a value with Window is Read. Return value is the string of the selected tab
Turned off grab_anywhere for Popups
New parameter, default_extension, for PopupGetFile
Keyboard shortcuts for menu items. Can hold ALT key to select items in men
Removed old-style Tabs - Risky change because it hit fundamental window packing and creation. Will
also break any old code using this style tab (sorry folks this is how progress happens)

3.8.6
Fix for Menus.
Fixed table colors. Now they work
Fixed returning keys for tabs
Window Hide / UnHide methods
Changed all Popups to remove context manager
Error checking for Graphing objects and for Element Updates

3.9.0 & 1.1.0
The FIRST UNIFIED version of the code!
Python 2.7 got a TON of features . Look back to 1.0 release for the list
Tab locations - Can place Tabs on top, bottom, left, right now instead of only the top

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


3.9.1 & 1.1.2
Tab features

Themes
Enable / Disable
Tab text colors
Selected tab color

New GetListValues method for Listbox
Can now have multiple progress bars in 1 window
Fix for closing debug-output window with other windows open
Topanga Look and Feel setting
User can create new look and feel settings / can access the look and feel table
New PopupQuick call. Shows a non-blocking popup window with auto-close
Tree Element partially done (don't use despite it showing up)

3.9.3 & 1.1.3
Disabled setting when creating element for:
Input
Combo
Option Menu
Listbox
Radio
Checkbox
Spinner
Multiline
Buttons
Slider
Doc strings on all Elements updated
Buttons can take image data as well as image files
Button Update can change images
Images can have background color
Table element new num_rows parameter
Table Element new alternating_row_color parameter

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Tree Element
Window Disappear / Reappear methods
Popup buttons resized to same size
Exposed look and feel table

Upcoming
Make suggestions people! Future release features

Port to other graphic engines. Hook up the front-end interface to a backend other than tkinter. Qt, WxPython,
etc. WxPython is higher priority.

Code Condition
Make it run 

Make it right 

Make it fast 

It's a recipe for success if done right. PySimpleGUI has completed the "Make it run" phase. It's far from "right"
in many ways. These are being worked on. The module is particularly poor for PEP 8 compliance. It was a
learning exercise that turned into a somewhat complete GUI solution for lightweight problems.

While the internals to PySimpleGUI are a tad sketchy, the public interfaces into the SDK are more strictly
defined and comply with PEP 8 for the most part.

Please log bugs and suggestions in the GitHub! It will only make the code stronger and better in the end, a
good thing for us all, right?

Design
A moment about the design-spirit of PySimpleGUI . From the beginning, this package was meant to take
advantage of Python's capabilities with the goal of programming ease.

Single File While not the best programming practice, the implementation resulted in a single file solution. Only
one file is needed, PySimpleGUI.py. You can post this file, email it, and easily import it using one statement.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Functions as objects In Python, functions behave just like object. When you're placing a Text Element into
your form, you may be sometimes calling a function and other times declaring an object. If you use the word
Text, then you're getting an object. If you're using Txt , then you're calling a function that returns a Text
object.

Lists It seemed quite natural to use Python's powerful list constructs when possible. The form is specified as a
series of lists. Each "row" of the GUI is represented as a list of Elements. When the form read returns the
results to the user, all of the results are presented as a single list. This makes reading a form's values super-
simple to do in a single line of Python code.

Dictionaries Want to view your form's results as a dictionary instead of a list... no problem, just use the key
keyword on your elements. For complex forms with a lot of values that need to be changed frequently, this is by
far the best way of consuming the results.

You can also look up elements using their keys. This is an excellent way to update elements in reaction to
another element. Call form.FindElement(key)  to get the Element.

Named / Optional Parameters This is a language feature that is featured heavily in all of the API calls, both
functions and classes. Elements are configured, in-place, by setting one or more optional parameters. For
example, a Text element's color is chosen by setting the optional text_color  parameter.

Author
MikeTheWatchGuy

Demo Code Contributors
JorjMcKie - PDF and image viewers (plus a number of code suggestions) Otherion - Table Demos Panda &
CSV. Loads of suggestions to the core APIs

License
GNU Lesser General Public License (LGPL 3) +

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://github.com/JorjMcKie
https://github.com/Otherion
https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Acknowledgments
JorjMcKie was the motivator behind the entire project. His wxsimpleGUI concepts sparked PySimpleGUI
into existence
Fredrik Lundh for his work on tkinter
Ruud van der Ham for all the help he's provided as a Python-mentor. Quite a few tricky bits of logic was
supplied by Ruud. The dual-purpose return values scheme is Ruud's for example
Numerous users who provided feature suggestions! Many of the cool features were suggested by
others. If you were one of them and are willing to take more credit, I'll list you here if you give me
permission. Most are too modest
moshekaplan/tkinter_components wrote the code for the Calendar Chooser Element. It was lifted
straight from GitHub
Bryan Oakley for the code that enables the grab_anywhere  feature.
Otherion for help with Tables, being a sounding board for new features, naming functions, ..., all around
great help
agjunyent figured out how to properly make tabs and wrote prototype code that demonstrated how to do
it
jfongattw huge suggestion... dictionaries. turned out to be
one of the most critical constructs in PySimpleGUI
venim code to doing Alt-Selections in menus, updating Combobox using index, request to disable
windows (a really good idea), checkbox and tab submits on change, returning keys for elements that
have change_submits set, ...
rtrrtr Helped get the 2.7 and 3.x code unified (big damned deal)
Tony Crewe (anthony.crewe@gmail.com) Generously provided his classroom materials that he has
written to teach a GUI course. If you're an educator and want to trade materials with Tony, he would like
to hear from you.

How Do I
Finally, I must thank the fine folks at How Do I. https://github.com/gleitz/howdoi Their utility has forever changed
the way and pace in which I can program. I urge you to try the HowDoI.py application here on GitHub. Trust
me, it's going to be worth the effort! Here are the steps to run that application

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://github.com/JorjMcKie
https://wiki.python.org/moin/FredrikLundh
https://forum.pythonistacafe.com/u/Ruud
https://github.com/moshekaplan
https://github.com/moshekaplan/tkinter_components
https://stackoverflow.com/users/7432/bryan-oakley
https://github.com/Otherion
https://github.com/agjunyent
https://github.com/jfongattw
https://github.com/venim
https://github.com/rtrrtr
https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


Install howdoi: 

      pip install howdoi 

Test your install: 

      python -m howdoi howdoi.py 

To run it: 

      Python HowDoI.py 

The pip command is all there is to the setup.

The way HowDoI works is that it uses your search term to look through stack overflow posts. It finds the best
answer, gets the code from the answer, and presents it as a response. It gives you the correct answer OFTEN.
It's a miracle that it work SO well. For Python questions, I simply start my query with 'Python'. Let's say you
forgot how to reverse a list in Python. When you run HowDoI and ask this question, this is what you'll see.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


In the hands of a competent programmer, this tool is amazing. It's a must-try kind of program that has
completely changed my programming process. I'm not afraid of asking for help! You just have to be smart about
using what you find.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf


The PySimpleGUI window that the results are shown in is an 'input' field which means you can copy and paste
the results right into your code.

Documentation built with MkDocs.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

http://www.mkdocs.org/
https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

