import sys if sys.version_info[0] >= 3: import PySimpleGUI as sg else: import PySimpleGUI27 as sg import cv2 import numpy as np from sys import exit as exit """ Demo program that displays a webcam using OpenCV and applies some very basic image functions - functions from top to bottom - none: no processing threshold: simple b/w-threshold on the luma channel, slider sets the threshold value canny: edge finding with canny, sliders set the two threshold values for the function => edge sensitivity contour: colour finding in the frame, first slider sets the hue for the colour to find, second the minimum saturation for the object. Found objects are drawn with a red contour. blur: simple Gaussian blur, slider sets the sigma, i.e. the amount of blur smear hue: moves the image hue values by the amount selected on the slider enhance: applies local contrast enhancement on the luma channel to make the image fancier - slider controls fanciness. """ def main(): sg.ChangeLookAndFeel('LightGreen') # define the window layout layout = [[sg.Text('OpenCV Demo', size=(40, 1), justification='center')], [sg.Image(filename='', key='image')], [sg.Radio('None', 'Radio', True, size=(10, 1))], [sg.Radio('threshold', 'Radio', size=(10, 1),key='thresh'),sg.Slider((0,255),128,1,orientation='h', size=(40, 15),key='thresh_slider')], [sg.Radio('canny', 'Radio', size=(10, 1), key='canny'),sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='canny_slider_a'),sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='canny_slider_b')], [sg.Radio('contour', 'Radio', size=(10, 1), key='contour'),sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='contour_slider'),sg.Slider((0, 255), 80, 1, orientation='h', size=(20, 15), key='base_slider')], [sg.Radio('blur', 'Radio', size=(10, 1),key='blur'),sg.Slider((1,11),1,1,orientation='h', size=(40, 15),key='blur_slider')], [sg.Radio('hue', 'Radio', size=(10, 1), key='hue'),sg.Slider((0, 225), 0, 1, orientation='h', size=(40, 15), key='hue_slider')], [sg.Radio('enhance', 'Radio', size=(10, 1),key='enhance'),sg.Slider((1,255),128,1,orientation='h', size=(40, 15),key='enhance_slider')], [sg.ReadButton('Exit', size=(10, 1))]] # create the window and show it without the plot window = sg.Window('Demo Application - OpenCV Integration', location=(800,400)) window.Layout(layout).Finalize() cap = cv2.VideoCapture(0) while True: event, values = window.ReadNonBlocking() if event == 'Exit' or values is None: sys.exit(0) ret, frame = cap.read() if values['thresh']: frame=cv2.cvtColor(frame,cv2.COLOR_BGR2LAB)[:,:,0] _,frame=cv2.threshold(frame,values['thresh_slider'],255,cv2.THRESH_BINARY) if values['canny']: frame=cv2.Canny(frame,values['canny_slider_a'],values['canny_slider_b']) if values['blur']: frame=cv2.GaussianBlur(frame,(21,21),values['blur_slider']) if values['hue']: frame=cv2.cvtColor(frame,cv2.COLOR_BGR2HSV) frame[:,:,0]+=values['hue_slider'] frame=cv2.cvtColor(frame,cv2.COLOR_HSV2BGR) if values['enhance']: enh_val=values['enhance_slider']/40 clahe=cv2.createCLAHE(clipLimit=enh_val, tileGridSize=(8,8)) lab=cv2.cvtColor(frame,cv2.COLOR_BGR2LAB) lab[:,:,0]=clahe.apply(lab[:,:,0]) frame=cv2.cvtColor(lab,cv2.COLOR_LAB2BGR) if values['contour']: hue=cv2.cvtColor(frame,cv2.COLOR_BGR2HSV) hue=cv2.GaussianBlur(hue,(21,21),1) hue=cv2.inRange(hue,np.array([values['contour_slider'],values['base_slider'],40]),np.array([values['contour_slider']+30,255,220])) _,cnts,_=cv2.findContours(hue,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) cv2.drawContours(frame,cnts,-1,(0,0,255),2) imgbytes=cv2.imencode('.png', frame)[1].tobytes() #ditto window.FindElement('image').Update(data=imgbytes) main()