Matplotlib demos! Single, animated, multiple

This commit is contained in:
MikeTheWatchGuy 2018-08-27 16:10:32 -04:00
parent 82e326a6c1
commit e1637fe8c8
3 changed files with 326 additions and 12 deletions

View File

@ -41,18 +41,66 @@ def draw_figure(canvas, figure, loc=(0, 0)):
return photo
#------------------------------- PASTE YOUR MATPLOTLIB CODE HERE -------------------------------
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.ticker import NullFormatter # useful for `logit` scale
# Fixing random state for reproducibility
np.random.seed(19680801)
# make up some data in the interval ]0, 1[
y = np.random.normal(loc=0.5, scale=0.4, size=1000)
y = y[(y > 0) & (y < 1)]
y.sort()
x = np.arange(len(y))
matplotlib.rcParams['axes.unicode_minus'] = False
fig, ax = plt.subplots()
ax.plot(10*np.random.randn(100), 10*np.random.randn(100), 'o')
ax.set_title('Using hyphen instead of Unicode minus')
# plot with various axes scales
plt.figure(1)
# linear
plt.subplot(221)
plt.plot(x, y)
plt.yscale('linear')
plt.title('linear')
plt.grid(True)
# log
plt.subplot(222)
plt.plot(x, y)
plt.yscale('log')
plt.title('log')
plt.grid(True)
# symmetric log
plt.subplot(223)
plt.plot(x, y - y.mean())
plt.yscale('symlog', linthreshy=0.01)
plt.title('symlog')
plt.grid(True)
# logit
plt.subplot(224)
plt.plot(x, y)
plt.yscale('logit')
plt.title('logit')
plt.grid(True)
# Format the minor tick labels of the y-axis into empty strings with
# `NullFormatter`, to avoid cumbering the axis with too many labels.
plt.gca().yaxis.set_minor_formatter(NullFormatter())
# Adjust the subplot layout, because the logit one may take more space
# than usual, due to y-tick labels like "1 - 10^{-3}"
plt.subplots_adjust(top=0.92, bottom=0.08, left=0.10, right=0.95, hspace=0.25,
wspace=0.35)
#------------------------------- END OF YOUR MATPLOTLIB CODE -------------------------------
# ****** Comment out this line if not using Pyplot ******
fig = plt.gcf() # if using Pyplot then get the figure from the plot
# -------------------------------- GUI Starts Here -------------------------------#
# fig = your figure you want to display. Assumption is that 'fig' holds the #

View File

@ -1,12 +1,10 @@
from tkinter import *
from random import randint
import PySimpleGUI as g
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, FigureCanvasAgg
from matplotlib.figure import Figure
import matplotlib.backends.tkagg as tkagg
import tkinter as Tk
import tkinter as tk
VIEW_SIZE = 50 # number of data points visible on 1 screen
def main():
fig = Figure()
@ -17,9 +15,11 @@ def main():
ax.grid()
canvas_elem = g.Canvas(size=(640, 480)) # get the canvas we'll be drawing on
slider_elem = g.Slider(range=(0,10000), size=(60,10), orientation='h')
# define the form layout
layout = [[g.Text('Animated Matplotlib', size=(40,1), justification='center', font='Helvetica 20')],
[canvas_elem],
[slider_elem],
[g.ReadFormButton('Exit', size=(10,2), pad=((280, 0), 3), font='Helvetica 14')]]
# create the form and show it without the plot
@ -36,14 +36,15 @@ def main():
if button is 'Exit' or values is None:
exit(69)
slider_elem.Update(i)
ax.cla()
ax.grid()
ax.plot(range(VIEW_SIZE), dpts[i:i+VIEW_SIZE], color='purple')
DATA_POINTS_PER_SCREEN = 40
ax.plot(range(DATA_POINTS_PER_SCREEN), dpts[i:i+DATA_POINTS_PER_SCREEN], color='purple')
graph.draw()
figure_x, figure_y, figure_w, figure_h = fig.bbox.bounds
figure_w, figure_h = int(figure_w), int(figure_h)
photo = Tk.PhotoImage(master=canvas, width=figure_w, height=figure_h)
photo = tk.PhotoImage(master=canvas, width=figure_w, height=figure_h)
canvas.create_image(640/2, 480/2, image=photo)
@ -58,4 +59,3 @@ def main():
if __name__ == '__main__':
main()

266
Demo_Matplotlib_Multiple.py Normal file
View File

@ -0,0 +1,266 @@
import PySimpleGUI as g
import matplotlib
matplotlib.use('TkAgg')
from matplotlib.backends.backend_tkagg import FigureCanvasAgg
import matplotlib.backends.tkagg as tkagg
import tkinter as Tk
"""
Demonstrates one way of embedding Matplotlib figures into a PySimpleGUI window.
Basic steps are:
* Create a Canvas Element
* Layout form
* Display form (NON BLOCKING)
* Draw plots onto convas
* Display form (BLOCKING)
"""
import numpy as np
import matplotlib.pyplot as plt
def PyplotSimple():
import numpy as np
import matplotlib.pyplot as plt
# evenly sampled time at 200ms intervals
t = np.arange(0., 5., 0.2)
# red dashes, blue squares and green triangles
plt.plot(t, t, 'r--', t, t ** 2, 'bs', t, t ** 3, 'g^')
fig = plt.gcf() # get the figure to show
return fig
def PyplotFormatstr():
def f(t):
return np.exp(-t) * np.cos(2*np.pi*t)
t1 = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02)
plt.figure(1)
plt.subplot(211)
plt.plot(t1, f(t1), 'bo', t2, f(t2), 'k')
plt.subplot(212)
plt.plot(t2, np.cos(2*np.pi*t2), 'r--')
fig = plt.gcf() # get the figure to show
return fig
def UnicodeMinus():
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
# Fixing random state for reproducibility
np.random.seed(19680801)
matplotlib.rcParams['axes.unicode_minus'] = False
fig, ax = plt.subplots()
ax.plot(10 * np.random.randn(100), 10 * np.random.randn(100), 'o')
ax.set_title('Using hyphen instead of Unicode minus')
return fig
def Subplot3d():
from mpl_toolkits.mplot3d.axes3d import Axes3D
from matplotlib import cm
# from matplotlib.ticker import LinearLocator, FixedLocator, FormatStrFormatter
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure()
ax = fig.add_subplot(1, 2, 1, projection='3d')
X = np.arange(-5, 5, 0.25)
Y = np.arange(-5, 5, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X ** 2 + Y ** 2)
Z = np.sin(R)
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.jet,
linewidth=0, antialiased=False)
ax.set_zlim3d(-1.01, 1.01)
# ax.w_zaxis.set_major_locator(LinearLocator(10))
# ax.w_zaxis.set_major_formatter(FormatStrFormatter('%.03f'))
fig.colorbar(surf, shrink=0.5, aspect=5)
from mpl_toolkits.mplot3d.axes3d import get_test_data
ax = fig.add_subplot(1, 2, 2, projection='3d')
X, Y, Z = get_test_data(0.05)
ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)
return fig
def PyplotScales():
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import NullFormatter # useful for `logit` scale
# Fixing random state for reproducibility
np.random.seed(19680801)
# make up some data in the interval ]0, 1[
y = np.random.normal(loc=0.5, scale=0.4, size=1000)
y = y[(y > 0) & (y < 1)]
y.sort()
x = np.arange(len(y))
# plot with various axes scales
plt.figure(1)
# linear
plt.subplot(221)
plt.plot(x, y)
plt.yscale('linear')
plt.title('linear')
plt.grid(True)
# log
plt.subplot(222)
plt.plot(x, y)
plt.yscale('log')
plt.title('log')
plt.grid(True)
# symmetric log
plt.subplot(223)
plt.plot(x, y - y.mean())
plt.yscale('symlog', linthreshy=0.01)
plt.title('symlog')
plt.grid(True)
# logit
plt.subplot(224)
plt.plot(x, y)
plt.yscale('logit')
plt.title('logit')
plt.grid(True)
# Format the minor tick labels of the y-axis into empty strings with
# `NullFormatter`, to avoid cumbering the axis with too many labels.
plt.gca().yaxis.set_minor_formatter(NullFormatter())
# Adjust the subplot layout, because the logit one may take more space
# than usual, due to y-tick labels like "1 - 10^{-3}"
plt.subplots_adjust(top=0.92, bottom=0.08, left=0.10, right=0.95, hspace=0.25,
wspace=0.35)
return plt.gcf()
def AxesGrid():
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1.axes_rgb import RGBAxes
def get_demo_image():
# prepare image
delta = 0.5
extent = (-3, 4, -4, 3)
x = np.arange(-3.0, 4.001, delta)
y = np.arange(-4.0, 3.001, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X ** 2 - Y ** 2)
Z2 = np.exp(-(X - 1) ** 2 - (Y - 1) ** 2)
Z = (Z1 - Z2) * 2
return Z, extent
def get_rgb():
Z, extent = get_demo_image()
Z[Z < 0] = 0.
Z = Z / Z.max()
R = Z[:13, :13]
G = Z[2:, 2:]
B = Z[:13, 2:]
return R, G, B
fig = plt.figure(1)
ax = RGBAxes(fig, [0.1, 0.1, 0.8, 0.8])
r, g, b = get_rgb()
kwargs = dict(origin="lower", interpolation="nearest")
ax.imshow_rgb(r, g, b, **kwargs)
ax.RGB.set_xlim(0., 9.5)
ax.RGB.set_ylim(0.9, 10.6)
plt.draw()
return plt.gcf()
def draw_figure(canvas, figure, loc=(0, 0)):
""" Draw a matplotlib figure onto a Tk canvas
loc: location of top-left corner of figure on canvas in pixels.
Inspired by matplotlib source: lib/matplotlib/backends/backend_tkagg.py
"""
figure_canvas_agg = FigureCanvasAgg(figure)
figure_canvas_agg.draw()
figure_x, figure_y, figure_w, figure_h = figure.bbox.bounds
figure_w, figure_h = int(figure_w), int(figure_h)
photo = Tk.PhotoImage(master=canvas, width=figure_w, height=figure_h)
# Position: convert from top-left anchor to center anchor
canvas.create_image(loc[0] + figure_w/2, loc[1] + figure_h/2, image=photo)
# Unfortunately, there's no accessor for the pointer to the native renderer
tkagg.blit(photo, figure_canvas_agg.get_renderer()._renderer, colormode=2)
# Return a handle which contains a reference to the photo object
# which must be kept live or else the picture disappears
return photo
#------------------------------- PASTE YOUR MATPLOTLIB CODE HERE -------------------------------
# -------------------------------- GUI Starts Here -------------------------------#
# fig = your figure you want to display. Assumption is that 'fig' holds the #
# information to display. #
# --------------------------------------------------------------------------------#
fig_dict = {'Pyplot Simple':PyplotSimple, 'Pyplot Formatstr':PyplotFormatstr,'PyPlot Three':Subplot3d,
'Unicode Minus': UnicodeMinus, 'Pyplot Scales' : PyplotScales, 'Axes Grid' : AxesGrid}
figure_w, figure_h = 640,480
canvas_elem = g.Canvas(size=(figure_w, figure_h)) # get the canvas we'll be drawing on
# define the form layout
listbox_values = [key for key in fig_dict.keys()]
col_listbox = [[g.Listbox(values=listbox_values,size=(20,8), key='func')],
[g.ReadFormButton('Plot', pad=((50,0), 3))]]
layout = [[g.Text('Matplotlib Plot Test', font=('current 18'))],
[g.Column(col_listbox), canvas_elem],
[g.Exit(pad=((50,0), 3), size=(4,2))]]
# create the form and show it without the plot
form = g.FlexForm('Demo Application - Embedding Matplotlib In PySimpleGUI')
form.Layout(layout)
form.Show(non_blocking=True)
form.NonBlocking = False
# add the plot to the window
func = fig_dict['Pyplot Simple']
while True:
fig = func()
fig_photo = draw_figure(canvas_elem.TKCanvas, fig)
# show it all again and get buttons
button, values = form.Read()
if button is None or button is 'Exit':
break
choice = values['func'][0]
try:
func = fig_dict[choice]
except:
func = fig_dict['Pyplot Simple']