New Matplotlib demo based on Template that allows changing Matplotlib Style and PySimpleGUI Theme to see what matches

This commit is contained in:
PySimpleGUI 2020-09-26 12:39:21 -04:00
parent 957fd84055
commit adce90b322
1 changed files with 230 additions and 0 deletions

View File

@ -0,0 +1,230 @@
import PySimpleGUI as sg
import numpy as np
from matplotlib.backends.backend_tkagg import FigureCanvasAgg
import matplotlib.figure
import matplotlib.pyplot as plt
import io
from matplotlib import cm
from mpl_toolkits.mplot3d.axes3d import get_test_data
from matplotlib.ticker import NullFormatter # useful for `logit` scale
"""
Demo - Matplotlib Non-interactive Embedded with Theme and Style selection
This demo is based on the Matplotlib "TEMPLATE" demo that is a general purpose, display-only
demo as only the image of the plot is shown. None of the buttons and interactive parts
of the MAtplotlib interface are included.
This demo adds the ability to change the Window's "Theme" and the Matplotlib's "Style".
It gives you a way to quickly see how well a theme is going to match a particular Matplotlib Style.
Copyright 2020 PySimpleGUI.org
"""
def create_axis_grid():
from mpl_toolkits.axes_grid1.axes_rgb import RGBAxes
plt.close('all')
def get_demo_image():
# prepare image
delta = 0.5
extent = (-3, 4, -4, 3)
x = np.arange(-3.0, 4.001, delta)
y = np.arange(-4.0, 3.001, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X ** 2 - Y ** 2)
Z2 = np.exp(-(X - 1) ** 2 - (Y - 1) ** 2)
Z = (Z1 - Z2) * 2
return Z, extent
def get_rgb():
Z, extent = get_demo_image()
Z[Z < 0] = 0.
Z = Z / Z.max()
R = Z[:13, :13]
G = Z[2:, 2:]
B = Z[:13, 2:]
return R, G, B
fig = plt.figure(1)
ax = RGBAxes(fig, [0.1, 0.1, 0.8, 0.8])
r, g, b = get_rgb()
kwargs = dict(origin="lower", interpolation="nearest")
ax.imshow_rgb(r, g, b, **kwargs)
ax.RGB.set_xlim(0., 9.5)
ax.RGB.set_ylim(0.9, 10.6)
plt.draw()
return plt.gcf()
def create_figure():
# ------------------------------- START OF YOUR MATPLOTLIB CODE -------------------------------
fig = matplotlib.figure.Figure(figsize=(5, 4), dpi=100)
t = np.arange(0, 3, .01)
fig.add_subplot(111).plot(t, 2 * np.sin(2 * np.pi * t))
return fig
def create_subplot_3d():
fig = plt.figure()
ax = fig.add_subplot(1, 2, 1, projection='3d')
X = np.arange(-5, 5, 0.25)
Y = np.arange(-5, 5, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X ** 2 + Y ** 2)
Z = np.sin(R)
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.jet,
linewidth=0, antialiased=False)
ax.set_zlim3d(-1.01, 1.01)
fig.colorbar(surf, shrink=0.5, aspect=5)
ax = fig.add_subplot(1, 2, 2, projection='3d')
X, Y, Z = get_test_data(0.05)
ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)
return fig
def create_pyplot_scales():
plt.close('all')
# Fixing random state for reproducibility
np.random.seed(19680801)
# make up some data in the interval ]0, 1[
y = np.random.normal(loc=0.5, scale=0.4, size=1000)
y = y[(y > 0) & (y < 1)]
y.sort()
x = np.arange(len(y))
# plot with various axes scales
plt.figure(1)
# linear
plt.subplot(221)
plt.plot(x, y)
plt.yscale('linear')
plt.title('linear')
plt.grid(True)
# log
plt.subplot(222)
plt.plot(x, y)
plt.yscale('log')
plt.title('log')
plt.grid(True)
# symmetric log
plt.subplot(223)
plt.plot(x, y - y.mean())
plt.yscale('symlog', linthreshy=0.01)
plt.title('symlog')
plt.grid(True)
# logit
plt.subplot(224)
plt.plot(x, y)
plt.yscale('logit')
plt.title('logit')
plt.grid(True)
# Format the minor tick labels of the y-axis into empty strings with
# `NullFormatter`, to avoid cumbering the axis with too many labels.
plt.gca().yaxis.set_minor_formatter(NullFormatter())
# Adjust the subplot layout, because the logit one may take more space
# than usual, due to y-tick labels like "1 - 10^{-3}"
plt.subplots_adjust(top=0.92, bottom=0.08, left=0.10, right=0.95, hspace=0.25,
wspace=0.35)
return plt.gcf()
# ----------------------------- The draw figure helpful function -----------------------------
def draw_figure(element, figure):
"""
Draws the previously created "figure" in the supplied Image Element
:param element: an Image Element
:param figure: a Matplotlib figure
:return: The figure canvas
"""
plt.close('all') # erases previously drawn plots
canv = FigureCanvasAgg(figure)
buf = io.BytesIO()
canv.print_figure(buf, format='png')
if buf is None:
return None
buf.seek(0)
element.update(data=buf.read())
return canv
dictionary_of_figures = {'Axis Grid': create_axis_grid,
'Subplot 3D': create_subplot_3d,
'Scales': create_pyplot_scales,
'Basic Figure': create_figure}
# ----------------------------- The GUI Section -----------------------------
def create_window():
"""
Defines the window's layout and creates the window object.
This function is used so that the window's theme can be changed and the window "re-started".
:return: The Window object
:rtype: sg.Window
"""
left_col = [[sg.T('Figures to Draw')],
[sg.Listbox(list(dictionary_of_figures), default_values=[list(dictionary_of_figures)[0]], size=(15, 5), key='-LB-')],
[sg.T('Matplotlib Styles')],
[sg.Combo(plt.style.available, size=(15, 10), key='-STYLE-')],
[sg.T('PySimpleGUI Themes')],
[sg.Combo(sg.theme_list(), default_value=sg.theme(), size=(15, 10), key='-THEME-')]]
layout = [[sg.T('Matplotlib Example', font='Any 20')],
[sg.Col(left_col), sg.Image(key='-IMAGE-')],
[sg.B('Draw'), sg.B('Exit')]]
window = sg.Window('Matplotlib Embedded Template', layout, finalize=True)
return window
def main():
window = create_window()
while True:
event, values = window.read()
print(event, values)
if event == 'Exit' or event == sg.WIN_CLOSED:
break
if event == 'Draw':
if values['-THEME-'] != sg.theme(): # if new theme chosen, create a new window
window.close()
sg.theme(values['-THEME-'])
window = create_window()
if values['-LB-']: # make sure something selected to draw
func = dictionary_of_figures[values['-LB-'][0]]
if values['-STYLE-']:
plt.style.use(values['-STYLE-'])
draw_figure(window['-IMAGE-'], func())
window.close()
if __name__ == "__main__":
main()