diff --git a/Demo_Matplotlib.py b/Demo_Matplotlib.py index 93f98a8f..9dc26dad 100644 --- a/Demo_Matplotlib.py +++ b/Demo_Matplotlib.py @@ -41,18 +41,66 @@ def draw_figure(canvas, figure, loc=(0, 0)): return photo #------------------------------- PASTE YOUR MATPLOTLIB CODE HERE ------------------------------- + import numpy as np -import matplotlib import matplotlib.pyplot as plt +from matplotlib.ticker import NullFormatter # useful for `logit` scale + # Fixing random state for reproducibility np.random.seed(19680801) +# make up some data in the interval ]0, 1[ +y = np.random.normal(loc=0.5, scale=0.4, size=1000) +y = y[(y > 0) & (y < 1)] +y.sort() +x = np.arange(len(y)) -matplotlib.rcParams['axes.unicode_minus'] = False -fig, ax = plt.subplots() -ax.plot(10*np.random.randn(100), 10*np.random.randn(100), 'o') -ax.set_title('Using hyphen instead of Unicode minus') +# plot with various axes scales +plt.figure(1) + +# linear +plt.subplot(221) +plt.plot(x, y) +plt.yscale('linear') +plt.title('linear') +plt.grid(True) + + +# log +plt.subplot(222) +plt.plot(x, y) +plt.yscale('log') +plt.title('log') +plt.grid(True) + + +# symmetric log +plt.subplot(223) +plt.plot(x, y - y.mean()) +plt.yscale('symlog', linthreshy=0.01) +plt.title('symlog') +plt.grid(True) + +# logit +plt.subplot(224) +plt.plot(x, y) +plt.yscale('logit') +plt.title('logit') +plt.grid(True) +# Format the minor tick labels of the y-axis into empty strings with +# `NullFormatter`, to avoid cumbering the axis with too many labels. +plt.gca().yaxis.set_minor_formatter(NullFormatter()) +# Adjust the subplot layout, because the logit one may take more space +# than usual, due to y-tick labels like "1 - 10^{-3}" +plt.subplots_adjust(top=0.92, bottom=0.08, left=0.10, right=0.95, hspace=0.25, + wspace=0.35) + + +#------------------------------- END OF YOUR MATPLOTLIB CODE ------------------------------- + +# ****** Comment out this line if not using Pyplot ****** +fig = plt.gcf() # if using Pyplot then get the figure from the plot # -------------------------------- GUI Starts Here -------------------------------# # fig = your figure you want to display. Assumption is that 'fig' holds the # diff --git a/Demo_Matplotlib_Animated.py b/Demo_Matplotlib_Animated.py index 37212b45..5f640fea 100644 --- a/Demo_Matplotlib_Animated.py +++ b/Demo_Matplotlib_Animated.py @@ -1,12 +1,10 @@ -from tkinter import * from random import randint import PySimpleGUI as g from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, FigureCanvasAgg from matplotlib.figure import Figure import matplotlib.backends.tkagg as tkagg -import tkinter as Tk +import tkinter as tk -VIEW_SIZE = 50 # number of data points visible on 1 screen def main(): fig = Figure() @@ -17,9 +15,11 @@ def main(): ax.grid() canvas_elem = g.Canvas(size=(640, 480)) # get the canvas we'll be drawing on + slider_elem = g.Slider(range=(0,10000), size=(60,10), orientation='h') # define the form layout layout = [[g.Text('Animated Matplotlib', size=(40,1), justification='center', font='Helvetica 20')], [canvas_elem], + [slider_elem], [g.ReadFormButton('Exit', size=(10,2), pad=((280, 0), 3), font='Helvetica 14')]] # create the form and show it without the plot @@ -36,14 +36,15 @@ def main(): if button is 'Exit' or values is None: exit(69) + slider_elem.Update(i) ax.cla() ax.grid() - - ax.plot(range(VIEW_SIZE), dpts[i:i+VIEW_SIZE], color='purple') + DATA_POINTS_PER_SCREEN = 40 + ax.plot(range(DATA_POINTS_PER_SCREEN), dpts[i:i+DATA_POINTS_PER_SCREEN], color='purple') graph.draw() figure_x, figure_y, figure_w, figure_h = fig.bbox.bounds figure_w, figure_h = int(figure_w), int(figure_h) - photo = Tk.PhotoImage(master=canvas, width=figure_w, height=figure_h) + photo = tk.PhotoImage(master=canvas, width=figure_w, height=figure_h) canvas.create_image(640/2, 480/2, image=photo) @@ -58,4 +59,3 @@ def main(): if __name__ == '__main__': main() - \ No newline at end of file diff --git a/Demo_Matplotlib_Multiple.py b/Demo_Matplotlib_Multiple.py new file mode 100644 index 00000000..d56d46d9 --- /dev/null +++ b/Demo_Matplotlib_Multiple.py @@ -0,0 +1,266 @@ +import PySimpleGUI as g +import matplotlib +matplotlib.use('TkAgg') +from matplotlib.backends.backend_tkagg import FigureCanvasAgg +import matplotlib.backends.tkagg as tkagg +import tkinter as Tk + +""" +Demonstrates one way of embedding Matplotlib figures into a PySimpleGUI window. + +Basic steps are: + * Create a Canvas Element + * Layout form + * Display form (NON BLOCKING) + * Draw plots onto convas + * Display form (BLOCKING) +""" + + + +import numpy as np +import matplotlib.pyplot as plt + + +def PyplotSimple(): + import numpy as np + import matplotlib.pyplot as plt + + # evenly sampled time at 200ms intervals + t = np.arange(0., 5., 0.2) + + # red dashes, blue squares and green triangles + plt.plot(t, t, 'r--', t, t ** 2, 'bs', t, t ** 3, 'g^') + + fig = plt.gcf() # get the figure to show + return fig + +def PyplotFormatstr(): + + def f(t): + return np.exp(-t) * np.cos(2*np.pi*t) + + t1 = np.arange(0.0, 5.0, 0.1) + t2 = np.arange(0.0, 5.0, 0.02) + + plt.figure(1) + plt.subplot(211) + plt.plot(t1, f(t1), 'bo', t2, f(t2), 'k') + + plt.subplot(212) + plt.plot(t2, np.cos(2*np.pi*t2), 'r--') + fig = plt.gcf() # get the figure to show + return fig + +def UnicodeMinus(): + import numpy as np + import matplotlib + import matplotlib.pyplot as plt + + # Fixing random state for reproducibility + np.random.seed(19680801) + + matplotlib.rcParams['axes.unicode_minus'] = False + fig, ax = plt.subplots() + ax.plot(10 * np.random.randn(100), 10 * np.random.randn(100), 'o') + ax.set_title('Using hyphen instead of Unicode minus') + return fig + +def Subplot3d(): + from mpl_toolkits.mplot3d.axes3d import Axes3D + from matplotlib import cm + # from matplotlib.ticker import LinearLocator, FixedLocator, FormatStrFormatter + import matplotlib.pyplot as plt + import numpy as np + + fig = plt.figure() + + ax = fig.add_subplot(1, 2, 1, projection='3d') + X = np.arange(-5, 5, 0.25) + Y = np.arange(-5, 5, 0.25) + X, Y = np.meshgrid(X, Y) + R = np.sqrt(X ** 2 + Y ** 2) + Z = np.sin(R) + surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.jet, + linewidth=0, antialiased=False) + ax.set_zlim3d(-1.01, 1.01) + + # ax.w_zaxis.set_major_locator(LinearLocator(10)) + # ax.w_zaxis.set_major_formatter(FormatStrFormatter('%.03f')) + + fig.colorbar(surf, shrink=0.5, aspect=5) + + from mpl_toolkits.mplot3d.axes3d import get_test_data + ax = fig.add_subplot(1, 2, 2, projection='3d') + X, Y, Z = get_test_data(0.05) + ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10) + return fig + +def PyplotScales(): + import numpy as np + import matplotlib.pyplot as plt + + from matplotlib.ticker import NullFormatter # useful for `logit` scale + + # Fixing random state for reproducibility + np.random.seed(19680801) + + # make up some data in the interval ]0, 1[ + y = np.random.normal(loc=0.5, scale=0.4, size=1000) + y = y[(y > 0) & (y < 1)] + y.sort() + x = np.arange(len(y)) + + # plot with various axes scales + plt.figure(1) + + # linear + plt.subplot(221) + plt.plot(x, y) + plt.yscale('linear') + plt.title('linear') + plt.grid(True) + + # log + plt.subplot(222) + plt.plot(x, y) + plt.yscale('log') + plt.title('log') + plt.grid(True) + + # symmetric log + plt.subplot(223) + plt.plot(x, y - y.mean()) + plt.yscale('symlog', linthreshy=0.01) + plt.title('symlog') + plt.grid(True) + + # logit + plt.subplot(224) + plt.plot(x, y) + plt.yscale('logit') + plt.title('logit') + plt.grid(True) + # Format the minor tick labels of the y-axis into empty strings with + # `NullFormatter`, to avoid cumbering the axis with too many labels. + plt.gca().yaxis.set_minor_formatter(NullFormatter()) + # Adjust the subplot layout, because the logit one may take more space + # than usual, due to y-tick labels like "1 - 10^{-3}" + plt.subplots_adjust(top=0.92, bottom=0.08, left=0.10, right=0.95, hspace=0.25, + wspace=0.35) + return plt.gcf() + + +def AxesGrid(): + import numpy as np + import matplotlib.pyplot as plt + from mpl_toolkits.axes_grid1.axes_rgb import RGBAxes + + def get_demo_image(): + # prepare image + delta = 0.5 + + extent = (-3, 4, -4, 3) + x = np.arange(-3.0, 4.001, delta) + y = np.arange(-4.0, 3.001, delta) + X, Y = np.meshgrid(x, y) + Z1 = np.exp(-X ** 2 - Y ** 2) + Z2 = np.exp(-(X - 1) ** 2 - (Y - 1) ** 2) + Z = (Z1 - Z2) * 2 + + return Z, extent + + def get_rgb(): + Z, extent = get_demo_image() + + Z[Z < 0] = 0. + Z = Z / Z.max() + + R = Z[:13, :13] + G = Z[2:, 2:] + B = Z[:13, 2:] + + return R, G, B + + fig = plt.figure(1) + ax = RGBAxes(fig, [0.1, 0.1, 0.8, 0.8]) + + r, g, b = get_rgb() + kwargs = dict(origin="lower", interpolation="nearest") + ax.imshow_rgb(r, g, b, **kwargs) + + ax.RGB.set_xlim(0., 9.5) + ax.RGB.set_ylim(0.9, 10.6) + + plt.draw() + return plt.gcf() + +def draw_figure(canvas, figure, loc=(0, 0)): + """ Draw a matplotlib figure onto a Tk canvas + + loc: location of top-left corner of figure on canvas in pixels. + + Inspired by matplotlib source: lib/matplotlib/backends/backend_tkagg.py + """ + figure_canvas_agg = FigureCanvasAgg(figure) + figure_canvas_agg.draw() + figure_x, figure_y, figure_w, figure_h = figure.bbox.bounds + figure_w, figure_h = int(figure_w), int(figure_h) + photo = Tk.PhotoImage(master=canvas, width=figure_w, height=figure_h) + + # Position: convert from top-left anchor to center anchor + canvas.create_image(loc[0] + figure_w/2, loc[1] + figure_h/2, image=photo) + + # Unfortunately, there's no accessor for the pointer to the native renderer + tkagg.blit(photo, figure_canvas_agg.get_renderer()._renderer, colormode=2) + + # Return a handle which contains a reference to the photo object + # which must be kept live or else the picture disappears + return photo + +#------------------------------- PASTE YOUR MATPLOTLIB CODE HERE ------------------------------- + + +# -------------------------------- GUI Starts Here -------------------------------# +# fig = your figure you want to display. Assumption is that 'fig' holds the # +# information to display. # +# --------------------------------------------------------------------------------# + +fig_dict = {'Pyplot Simple':PyplotSimple, 'Pyplot Formatstr':PyplotFormatstr,'PyPlot Three':Subplot3d, + 'Unicode Minus': UnicodeMinus, 'Pyplot Scales' : PyplotScales, 'Axes Grid' : AxesGrid} + +figure_w, figure_h = 640,480 +canvas_elem = g.Canvas(size=(figure_w, figure_h)) # get the canvas we'll be drawing on +# define the form layout +listbox_values = [key for key in fig_dict.keys()] +col_listbox = [[g.Listbox(values=listbox_values,size=(20,8), key='func')], + [g.ReadFormButton('Plot', pad=((50,0), 3))]] + +layout = [[g.Text('Matplotlib Plot Test', font=('current 18'))], + [g.Column(col_listbox), canvas_elem], + [g.Exit(pad=((50,0), 3), size=(4,2))]] + +# create the form and show it without the plot +form = g.FlexForm('Demo Application - Embedding Matplotlib In PySimpleGUI') +form.Layout(layout) +form.Show(non_blocking=True) +form.NonBlocking = False + +# add the plot to the window +func = fig_dict['Pyplot Simple'] +while True: + fig = func() + fig_photo = draw_figure(canvas_elem.TKCanvas, fig) + + # show it all again and get buttons + button, values = form.Read() + if button is None or button is 'Exit': + break + + choice = values['func'][0] + + try: + func = fig_dict[choice] + except: + func = fig_dict['Pyplot Simple'] +