New Matplotlib using Image Element demo - shows a Spectrogram

This commit is contained in:
PySimpleGUI 2021-06-29 21:06:11 -04:00
parent 30c9241898
commit 3652760508
1 changed files with 133 additions and 0 deletions

View File

@ -0,0 +1,133 @@
import PySimpleGUI as sg
import numpy as np
from matplotlib.backends.backend_tkagg import FigureCanvasAgg
import matplotlib.pyplot as plt
import io
"""
Demo_Matplotlib_Image_Elem Demo
Demo to show
* How to use an Image element to show a Matplotlib figure
* How to draw a Spectrogram
* Hide the Image when a figure isn't present (shrinks the window automatically)
The example graph can be found in the matplotlib gallery:
https://matplotlib.org/stable/gallery/images_contours_and_fields/specgram_demo.html
Copyright 2021 PySimpleGUI
"""
# .d88888b dP dP
# 88. "' 88 88
# `Y88888b. d8888P .d8888b. 88d888b. d8888P
# `8b 88 88' `88 88' `88 88
# d8' .8P 88 88. .88 88 88
# Y88888P dP `88888P8 dP dP
# oooooooooooooooooooooooooooooooooooooooooo of your Matplotlib code
def your_matplotlib_code():
# Fixing random state for reproducibility
np.random.seed(19680801)
dt = 0.0005
t = np.arange(0.0, 20.0, dt)
s1 = np.sin(2 * np.pi * 100 * t)
s2 = 2 * np.sin(2 * np.pi * 400 * t)
# create a transient "chirp"
s2[t <= 10] = s2[12 <= t] = 0
# add some noise into the mix
nse = 0.01 * np.random.random(size=len(t))
x = s1 + s2 + nse # the signal
NFFT = 1024 # the length of the windowing segments
Fs = int(1.0 / dt) # the sampling frequency
fig, (ax1, ax2) = plt.subplots(nrows=2)
ax1.plot(t, x)
Pxx, freqs, bins, im = ax2.specgram(x, NFFT=NFFT, Fs=Fs, noverlap=900)
return fig
# 88888888b dP
# 88 88
# 88aaaa 88d888b. .d888b88
# 88 88' `88 88' `88
# 88 88 88 88. .88
# 88888888P dP dP `88888P8
# ooooooooooooooooooooooooooooo of your Matplotlib code
# dP dP dP
# 88 88 88
# 88aaaaa88a .d8888b. 88 88d888b. .d8888b. 88d888b.
# 88 88 88ooood8 88 88' `88 88ooood8 88' `88
# 88 88 88. ... 88 88. .88 88. ... 88
# dP dP `88888P' dP 88Y888P' `88888P' dP
# ooooooooooooooooooooooo~88~oooooooooooooooooooooooo function
# dP
def draw_figure(element, figure):
"""
Draws the previously created "figure" in the supplied Image Element
:param element: an Image Element
:param figure: a Matplotlib figure
:return: The figure canvas
"""
plt.close('all') # erases previously drawn plots
canv = FigureCanvasAgg(figure)
buf = io.BytesIO()
canv.print_figure(buf, format='png')
if buf is None:
return None
buf.seek(0)
element.update(data=buf.read(), visible=True)
return canv
# .88888. dP dP dP
# d8' `88 88 88 88
# 88 88 88 88
# 88 YP88 88 88 88
# Y8. .88 Y8. .8P 88
# `88888' `Y88888P' dP
# ooooooooooooooooooooooo
def main():
# define the window layout
layout = [[sg.Text('Spectrogram test')],
[sg.pin(sg.Image(key='-IMAGE-'))],
[sg.Button('Ok'), sg.B('Clear')]]
# create the form and show it without the plot
window = sg.Window('Spectrogram', layout, element_justification='c', font='Helvetica 14')
while True:
# add the plot to the window
event, values = window.read()
if event == sg.WIN_CLOSED:
break
elif event == 'Ok':
draw_figure(window['-IMAGE-'], your_matplotlib_code())
elif event == 'Clear':
plt.close('all') # close all plots
window['-IMAGE-'].update() # clears the image
window['-IMAGE-'].update(visible=False) # hides the blank image
window.close()
if __name__ == '__main__':
main()