diff --git a/DemoPrograms/Demo_Matplotlib_Image_Elem_Spetrogram_Animated.py b/DemoPrograms/Demo_Matplotlib_Image_Elem_Spetrogram_Animated.py new file mode 100644 index 00000000..f45b8c98 --- /dev/null +++ b/DemoPrograms/Demo_Matplotlib_Image_Elem_Spetrogram_Animated.py @@ -0,0 +1,154 @@ +import PySimpleGUI as sg +import numpy as np +from matplotlib.backends.backend_tkagg import FigureCanvasAgg +import matplotlib.pyplot as plt +import io +import time + +""" + Demo_Matplotlib_Image_Elem_Spetrogram_Animated Demo + + Demo to show + * How to use an Image element to show a Matplotlib figure + * How to draw a Spectrogram + * How to animate the drawing by simply erasing and drawing the entire figure + + The point here is to keep things simple to enable you to get started. + + The example static graph can be found in the matplotlib gallery: + https://matplotlib.org/stable/gallery/images_contours_and_fields/specgram_demo.html + + Copyright 2021 PySimpleGUI +""" + +np.random.seed(19801) + +# .d88888b dP dP +# 88. "' 88 88 +# `Y88888b. d8888P .d8888b. 88d888b. d8888P +# `8b 88 88' `88 88' `88 88 +# d8' .8P 88 88. .88 88 88 +# Y88888P dP `88888P8 dP dP +# oooooooooooooooooooooooooooooooooooooooooo of your Matplotlib code + + +def your_matplotlib_code(): + # The animated part of this is the t_lower, t_upper terms as well as the entire dataset that's graphed. + # An entirely new graph is created from scratch every time... implying here that optimization is possible. + if not hasattr(your_matplotlib_code, 't_lower'): + your_matplotlib_code.t_lower = 10 + your_matplotlib_code.t_upper = 12 + else: + your_matplotlib_code.t_lower = (your_matplotlib_code.t_lower + .5) % 18 + your_matplotlib_code.t_upper = (your_matplotlib_code.t_upper + .5) % 18 + + dt = 0.0005 + t = np.arange(0.0, 20.0, dt) + s1 = np.sin(2 * np.pi * 100 * t) + s2 = 2 * np.sin(2 * np.pi * 400 * t) + + # create a transient "chirp" + # s2[t <= 5] = s2[15 <= t] = 0 # original line of code (not animated) + # If running the animation, use the t_lower and t_upper values + s2[t <= your_matplotlib_code.t_lower] = s2[your_matplotlib_code.t_upper <= t] = 0 + + # add some noise into the mix + nse = 0.01 * np.random.random(size=len(t)) + + x = s1 + s2 + nse # the signal + NFFT = 1024 # the length of the windowing segments + Fs = int(1.0 / dt) # the sampling frequency + + fig, (ax2) = plt.subplots(nrows=1) + # ax1.plot(t, x) + Pxx, freqs, bins, im = ax2.specgram(x, NFFT=NFFT, Fs=Fs, noverlap=900) + + return fig + + +# 88888888b dP +# 88 88 +# 88aaaa 88d888b. .d888b88 +# 88 88' `88 88' `88 +# 88 88 88 88. .88 +# 88888888P dP dP `88888P8 +# ooooooooooooooooooooooooooooo of your Matplotlib code + + +# ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo + + +# dP dP dP +# 88 88 88 +# 88aaaaa88a .d8888b. 88 88d888b. .d8888b. 88d888b. +# 88 88 88ooood8 88 88' `88 88ooood8 88' `88 +# 88 88 88. ... 88 88. .88 88. ... 88 +# dP dP `88888P' dP 88Y888P' `88888P' dP +# ooooooooooooooooooooooo~88~oooooooooooooooooooooooo function starts here +# dP + +def draw_figure(element, figure): + """ + Draws the previously created "figure" in the supplied Image Element + + :param element: an Image Element + :param figure: a Matplotlib figure + :return: The figure canvas + """ + + plt.close('all') # erases previously drawn plots + canv = FigureCanvasAgg(figure) + buf = io.BytesIO() + canv.print_figure(buf, format='png') + if buf is not None: + buf.seek(0) + element.update(data=buf.read()) + return canv + else: + return None + + +# .88888. dP dP dP +# d8' `88 88 88 88 +# 88 88 88 88 +# 88 YP88 88 88 88 +# Y8. .88 Y8. .8P 88 +# `88888' `Y88888P' dP +# ooooooooooooooooooooooo + + +def main(): + # define the window layout + layout = [[sg.Text('Spectrogram Animated - Not Threaded', font='Helvetica 24')], + [sg.pin(sg.Image(key='-IMAGE-'))], + [sg.T(size=(50, 1), k='-STATS-')], + [sg.B('Animate', focus=True, k='-ANIMATE-')]] + + # create the form and show it without the plot + window = sg.Window('Animated Spectrogram', layout, element_justification='c', font='Helvetica 14') + + counter = delta = start_time = 0 + timeout = None + while True: + event, values = window.read(timeout=timeout) + if event == sg.WIN_CLOSED: + break + sg.timer_start() + if event == '-ANIMATE-': + timeout = 0 + window['-IMAGE-'].update(visible=True) + start_time = time.time() + elif event == sg.TIMEOUT_EVENT: + plt.close('all') # close all plots + window['-IMAGE-'].update() # clears the image + draw_figure(window['-IMAGE-'], your_matplotlib_code()) + seconds_elapsed = int(time.time() - start_time) + fps = counter/seconds_elapsed if seconds_elapsed != 0 else 1.0 + window['-STATS-'].update(f'Frame {counter} Write Time {delta} FPS = {fps:2.2} seconds = {seconds_elapsed}') + counter += 1 + delta = sg.timer_stop() + window.close() + + +if __name__ == '__main__': + main() \ No newline at end of file diff --git a/DemoPrograms/Demo_Matplotlib_Image_Elem_Spetrogram_Animated_Threaded.py b/DemoPrograms/Demo_Matplotlib_Image_Elem_Spetrogram_Animated_Threaded.py new file mode 100644 index 00000000..fca7102e --- /dev/null +++ b/DemoPrograms/Demo_Matplotlib_Image_Elem_Spetrogram_Animated_Threaded.py @@ -0,0 +1,173 @@ +import PySimpleGUI as sg +import numpy as np +from matplotlib.backends.backend_tkagg import FigureCanvasAgg +import matplotlib.pyplot as plt +import io +import threading +import time + +""" + Demo_Matplotlib_Image_Elem_Spetrogram_Animated_Threaded Demo + + Demo to show + * How to use an Image element to show a Matplotlib figure + * How to draw a Spectrogram + * How to animate the drawing by simply erasing and drawing the entire figure + * How to communicate between a thread and the GUI + + The point here is to keep things simple to enable you to get started. + + NOTE: + This threaded technique with matplotlib hasn't been thoroughly tested. + There may be resource leaks for example. Have run for several hundred seconds + without problems so it's perhaps safe as written. + + The example static graph can be found in the matplotlib gallery: + https://matplotlib.org/stable/gallery/images_contours_and_fields/specgram_demo.html + + Copyright 2021 PySimpleGUI +""" + +np.random.seed(19801) + + +# .d88888b dP dP +# 88. "' 88 88 +# `Y88888b. d8888P .d8888b. 88d888b. d8888P +# `8b 88 88' `88 88' `88 88 +# d8' .8P 88 88. .88 88 88 +# Y88888P dP `88888P8 dP dP +# oooooooooooooooooooooooooooooooooooooooooo of your Matplotlib code + + +def the_thread(window: sg.Window): + """ + The thread that communicates with the application through the window's events. + + Because the figure creation time is greater than the GUI drawing time, it's safe + to send a non-regulated stream of events without fear of overrunning the communication queue + """ + while True: + fig = your_matplotlib_code() + buf = draw_figure(fig) + window.write_event_value('-THREAD-', buf) # Data sent is a tuple of thread name and counter + + +def your_matplotlib_code(): + # The animated part of this is the t_lower, t_upper terms as well as the entire dataset that's graphed. + # An entirely new graph is created from scratch every time... implying here that optimization is possible. + if not hasattr(your_matplotlib_code, 't_lower'): + your_matplotlib_code.t_lower = 10 + your_matplotlib_code.t_upper = 12 + else: + your_matplotlib_code.t_lower = (your_matplotlib_code.t_lower + .5) % 18 + your_matplotlib_code.t_upper = (your_matplotlib_code.t_upper + .5) % 18 + + dt = 0.0005 + t = np.arange(0.0, 20.0, dt) + s1 = np.sin(2 * np.pi * 100 * t) + s2 = 2 * np.sin(2 * np.pi * 400 * t) + + # create a transient "chirp" + # s2[t <= 5] = s2[15 <= t] = 0 # original line of code (not animated) + # If running the animation, use the t_lower and t_upper values + s2[t <= your_matplotlib_code.t_lower] = s2[your_matplotlib_code.t_upper <= t] = 0 + + # add some noise into the mix + nse = 0.01 * np.random.random(size=len(t)) + + x = s1 + s2 + nse # the signal + NFFT = 1024 # the length of the windowing segments + Fs = int(1.0 / dt) # the sampling frequency + + fig, (ax2) = plt.subplots(nrows=1) + # ax1.plot(t, x) + Pxx, freqs, bins, im = ax2.specgram(x, NFFT=NFFT, Fs=Fs, noverlap=900) + + return fig + + +# 88888888b dP +# 88 88 +# 88aaaa 88d888b. .d888b88 +# 88 88' `88 88' `88 +# 88 88 88 88. .88 +# 88888888P dP dP `88888P8 +# ooooooooooooooooooooooooooooo of your Matplotlib code + + +# ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo + + +# dP dP dP +# 88 88 88 +# 88aaaaa88a .d8888b. 88 88d888b. .d8888b. 88d888b. +# 88 88 88ooood8 88 88' `88 88ooood8 88' `88 +# 88 88 88. ... 88 88. .88 88. ... 88 +# dP dP `88888P' dP 88Y888P' `88888P' dP +# ooooooooooooooooooooooo~88~oooooooooooooooooooooooo function starts here +# dP + +def draw_figure(figure): + """ + Draws the previously created "figure" in the supplied Image Element + + :param figure: a Matplotlib figure + :return: BytesIO object + """ + + plt.close('all') # erases previously drawn plots + canv = FigureCanvasAgg(figure) + buf = io.BytesIO() + canv.print_figure(buf, format='png') + if buf is not None: + buf.seek(0) + # element.update(data=buf.read()) + return buf + else: + return None + + +# .88888. dP dP dP +# d8' `88 88 88 88 +# 88 88 88 88 +# 88 YP88 88 88 88 +# Y8. .88 Y8. .8P 88 +# `88888' `Y88888P' dP +# ooooooooooooooooooooooo + + +def main(): + # define the window layout + layout = [[sg.Text('Spectrogram Animated - Threaded', font='Helvetica 24')], + [sg.pin(sg.Image(key='-IMAGE-'))], + [sg.T(size=(50, 1), k='-STATS-')], + [sg.B('Animate', focus=True, k='-ANIMATE-')]] + + # create the form and show it without the plot + window = sg.Window('Animated Spectrogram', layout, element_justification='c', font='Helvetica 14') + + counter = start_time = delta = 0 + while True: + event, values = window.read() + if event == sg.WIN_CLOSED: + break + sg.timer_start() + if event == '-ANIMATE-': + window['-IMAGE-'].update(visible=True) + start_time = time.time() + threading.Thread(target=the_thread, args=(window,), daemon=True).start() + elif event == '-THREAD-': + plt.close('all') # close all plots... unclear if this is required + window['-IMAGE-'].update(data=values[event].read()) + counter += 1 + seconds_elapsed = int(time.time() - start_time) + fps = counter / seconds_elapsed if seconds_elapsed != 0 else 1.0 + window['-STATS-'].update(f'Frame {counter} Write Time {delta} FPS = {fps:2.2} seconds = {seconds_elapsed}') + delta = sg.timer_stop() + + window.close() + + +if __name__ == '__main__': + main() \ No newline at end of file