Fixed clearing of background, many more plots
This commit is contained in:
parent
28a38dcf86
commit
23bdd2664c
|
@ -35,6 +35,307 @@ def PyplotSimple():
|
|||
fig = plt.gcf() # get the figure to show
|
||||
return fig
|
||||
|
||||
def PyplotGGPlotSytleSheet():
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
plt.style.use('ggplot')
|
||||
|
||||
# Fixing random state for reproducibility
|
||||
np.random.seed(19680801)
|
||||
|
||||
fig, axes = plt.subplots(ncols=2, nrows=2)
|
||||
ax1, ax2, ax3, ax4 = axes.ravel()
|
||||
|
||||
# scatter plot (Note: `plt.scatter` doesn't use default colors)
|
||||
x, y = np.random.normal(size=(2, 200))
|
||||
ax1.plot(x, y, 'o')
|
||||
|
||||
# sinusoidal lines with colors from default color cycle
|
||||
L = 2 * np.pi
|
||||
x = np.linspace(0, L)
|
||||
ncolors = len(plt.rcParams['axes.prop_cycle'])
|
||||
shift = np.linspace(0, L, ncolors, endpoint=False)
|
||||
for s in shift:
|
||||
ax2.plot(x, np.sin(x + s), '-')
|
||||
ax2.margins(0)
|
||||
|
||||
# bar graphs
|
||||
x = np.arange(5)
|
||||
y1, y2 = np.random.randint(1, 25, size=(2, 5))
|
||||
width = 0.25
|
||||
ax3.bar(x, y1, width)
|
||||
ax3.bar(x + width, y2, width,
|
||||
color=list(plt.rcParams['axes.prop_cycle'])[2]['color'])
|
||||
ax3.set_xticks(x + width)
|
||||
ax3.set_xticklabels(['a', 'b', 'c', 'd', 'e'])
|
||||
|
||||
# circles with colors from default color cycle
|
||||
for i, color in enumerate(plt.rcParams['axes.prop_cycle']):
|
||||
xy = np.random.normal(size=2)
|
||||
ax4.add_patch(plt.Circle(xy, radius=0.3, color=color['color']))
|
||||
ax4.axis('equal')
|
||||
ax4.margins(0)
|
||||
fig = plt.gcf() # get the figure to show
|
||||
return fig
|
||||
|
||||
def PyplotBoxPlot():
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# Fixing random state for reproducibility
|
||||
np.random.seed(19680801)
|
||||
|
||||
# fake up some data
|
||||
spread = np.random.rand(50) * 100
|
||||
center = np.ones(25) * 50
|
||||
flier_high = np.random.rand(10) * 100 + 100
|
||||
flier_low = np.random.rand(10) * -100
|
||||
data = np.concatenate((spread, center, flier_high, flier_low), 0)
|
||||
fig1, ax1 = plt.subplots()
|
||||
ax1.set_title('Basic Plot')
|
||||
ax1.boxplot(data)
|
||||
return fig1
|
||||
|
||||
def PyplotRadarChart():
|
||||
import numpy as np
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.path import Path
|
||||
from matplotlib.spines import Spine
|
||||
from matplotlib.projections.polar import PolarAxes
|
||||
from matplotlib.projections import register_projection
|
||||
|
||||
def radar_factory(num_vars, frame='circle'):
|
||||
"""Create a radar chart with `num_vars` axes.
|
||||
|
||||
This function creates a RadarAxes projection and registers it.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
num_vars : int
|
||||
Number of variables for radar chart.
|
||||
frame : {'circle' | 'polygon'}
|
||||
Shape of frame surrounding axes.
|
||||
|
||||
"""
|
||||
# calculate evenly-spaced axis angles
|
||||
theta = np.linspace(0, 2 * np.pi, num_vars, endpoint=False)
|
||||
|
||||
def draw_poly_patch(self):
|
||||
# rotate theta such that the first axis is at the top
|
||||
verts = unit_poly_verts(theta + np.pi / 2)
|
||||
return plt.Polygon(verts, closed=True, edgecolor='k')
|
||||
|
||||
def draw_circle_patch(self):
|
||||
# unit circle centered on (0.5, 0.5)
|
||||
return plt.Circle((0.5, 0.5), 0.5)
|
||||
|
||||
patch_dict = {'polygon': draw_poly_patch, 'circle': draw_circle_patch}
|
||||
if frame not in patch_dict:
|
||||
raise ValueError('unknown value for `frame`: %s' % frame)
|
||||
|
||||
class RadarAxes(PolarAxes):
|
||||
|
||||
name = 'radar'
|
||||
# use 1 line segment to connect specified points
|
||||
RESOLUTION = 1
|
||||
# define draw_frame method
|
||||
draw_patch = patch_dict[frame]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(RadarAxes, self).__init__(*args, **kwargs)
|
||||
# rotate plot such that the first axis is at the top
|
||||
self.set_theta_zero_location('N')
|
||||
|
||||
def fill(self, *args, **kwargs):
|
||||
"""Override fill so that line is closed by default"""
|
||||
closed = kwargs.pop('closed', True)
|
||||
return super(RadarAxes, self).fill(closed=closed, *args, **kwargs)
|
||||
|
||||
def plot(self, *args, **kwargs):
|
||||
"""Override plot so that line is closed by default"""
|
||||
lines = super(RadarAxes, self).plot(*args, **kwargs)
|
||||
for line in lines:
|
||||
self._close_line(line)
|
||||
|
||||
def _close_line(self, line):
|
||||
x, y = line.get_data()
|
||||
# FIXME: markers at x[0], y[0] get doubled-up
|
||||
if x[0] != x[-1]:
|
||||
x = np.concatenate((x, [x[0]]))
|
||||
y = np.concatenate((y, [y[0]]))
|
||||
line.set_data(x, y)
|
||||
|
||||
def set_varlabels(self, labels):
|
||||
self.set_thetagrids(np.degrees(theta), labels)
|
||||
|
||||
def _gen_axes_patch(self):
|
||||
return self.draw_patch()
|
||||
|
||||
def _gen_axes_spines(self):
|
||||
if frame == 'circle':
|
||||
return PolarAxes._gen_axes_spines(self)
|
||||
# The following is a hack to get the spines (i.e. the axes frame)
|
||||
# to draw correctly for a polygon frame.
|
||||
|
||||
# spine_type must be 'left', 'right', 'top', 'bottom', or `circle`.
|
||||
spine_type = 'circle'
|
||||
verts = unit_poly_verts(theta + np.pi / 2)
|
||||
# close off polygon by repeating first vertex
|
||||
verts.append(verts[0])
|
||||
path = Path(verts)
|
||||
|
||||
spine = Spine(self, spine_type, path)
|
||||
spine.set_transform(self.transAxes)
|
||||
return {'polar': spine}
|
||||
|
||||
register_projection(RadarAxes)
|
||||
return theta
|
||||
|
||||
def unit_poly_verts(theta):
|
||||
"""Return vertices of polygon for subplot axes.
|
||||
|
||||
This polygon is circumscribed by a unit circle centered at (0.5, 0.5)
|
||||
"""
|
||||
x0, y0, r = [0.5] * 3
|
||||
verts = [(r * np.cos(t) + x0, r * np.sin(t) + y0) for t in theta]
|
||||
return verts
|
||||
|
||||
def example_data():
|
||||
# The following data is from the Denver Aerosol Sources and Health study.
|
||||
# See doi:10.1016/j.atmosenv.2008.12.017
|
||||
#
|
||||
# The data are pollution source profile estimates for five modeled
|
||||
# pollution sources (e.g., cars, wood-burning, etc) that emit 7-9 chemical
|
||||
# species. The radar charts are experimented with here to see if we can
|
||||
# nicely visualize how the modeled source profiles change across four
|
||||
# scenarios:
|
||||
# 1) No gas-phase species present, just seven particulate counts on
|
||||
# Sulfate
|
||||
# Nitrate
|
||||
# Elemental Carbon (EC)
|
||||
# Organic Carbon fraction 1 (OC)
|
||||
# Organic Carbon fraction 2 (OC2)
|
||||
# Organic Carbon fraction 3 (OC3)
|
||||
# Pyrolized Organic Carbon (OP)
|
||||
# 2)Inclusion of gas-phase specie carbon monoxide (CO)
|
||||
# 3)Inclusion of gas-phase specie ozone (O3).
|
||||
# 4)Inclusion of both gas-phase species is present...
|
||||
data = [
|
||||
['Sulfate', 'Nitrate', 'EC', 'OC1', 'OC2', 'OC3', 'OP', 'CO', 'O3'],
|
||||
('Basecase', [
|
||||
[0.88, 0.01, 0.03, 0.03, 0.00, 0.06, 0.01, 0.00, 0.00],
|
||||
[0.07, 0.95, 0.04, 0.05, 0.00, 0.02, 0.01, 0.00, 0.00],
|
||||
[0.01, 0.02, 0.85, 0.19, 0.05, 0.10, 0.00, 0.00, 0.00],
|
||||
[0.02, 0.01, 0.07, 0.01, 0.21, 0.12, 0.98, 0.00, 0.00],
|
||||
[0.01, 0.01, 0.02, 0.71, 0.74, 0.70, 0.00, 0.00, 0.00]]),
|
||||
('With CO', [
|
||||
[0.88, 0.02, 0.02, 0.02, 0.00, 0.05, 0.00, 0.05, 0.00],
|
||||
[0.08, 0.94, 0.04, 0.02, 0.00, 0.01, 0.12, 0.04, 0.00],
|
||||
[0.01, 0.01, 0.79, 0.10, 0.00, 0.05, 0.00, 0.31, 0.00],
|
||||
[0.00, 0.02, 0.03, 0.38, 0.31, 0.31, 0.00, 0.59, 0.00],
|
||||
[0.02, 0.02, 0.11, 0.47, 0.69, 0.58, 0.88, 0.00, 0.00]]),
|
||||
('With O3', [
|
||||
[0.89, 0.01, 0.07, 0.00, 0.00, 0.05, 0.00, 0.00, 0.03],
|
||||
[0.07, 0.95, 0.05, 0.04, 0.00, 0.02, 0.12, 0.00, 0.00],
|
||||
[0.01, 0.02, 0.86, 0.27, 0.16, 0.19, 0.00, 0.00, 0.00],
|
||||
[0.01, 0.03, 0.00, 0.32, 0.29, 0.27, 0.00, 0.00, 0.95],
|
||||
[0.02, 0.00, 0.03, 0.37, 0.56, 0.47, 0.87, 0.00, 0.00]]),
|
||||
('CO & O3', [
|
||||
[0.87, 0.01, 0.08, 0.00, 0.00, 0.04, 0.00, 0.00, 0.01],
|
||||
[0.09, 0.95, 0.02, 0.03, 0.00, 0.01, 0.13, 0.06, 0.00],
|
||||
[0.01, 0.02, 0.71, 0.24, 0.13, 0.16, 0.00, 0.50, 0.00],
|
||||
[0.01, 0.03, 0.00, 0.28, 0.24, 0.23, 0.00, 0.44, 0.88],
|
||||
[0.02, 0.00, 0.18, 0.45, 0.64, 0.55, 0.86, 0.00, 0.16]])
|
||||
]
|
||||
return data
|
||||
|
||||
N = 9
|
||||
theta = radar_factory(N, frame='polygon')
|
||||
|
||||
data = example_data()
|
||||
spoke_labels = data.pop(0)
|
||||
|
||||
fig, axes = plt.subplots(figsize=(9, 9), nrows=2, ncols=2,
|
||||
subplot_kw=dict(projection='radar'))
|
||||
fig.subplots_adjust(wspace=0.25, hspace=0.20, top=0.85, bottom=0.05)
|
||||
|
||||
colors = ['b', 'r', 'g', 'm', 'y']
|
||||
# Plot the four cases from the example data on separate axes
|
||||
for ax, (title, case_data) in zip(axes.flatten(), data):
|
||||
ax.set_rgrids([0.2, 0.4, 0.6, 0.8])
|
||||
ax.set_title(title, weight='bold', size='medium', position=(0.5, 1.1),
|
||||
horizontalalignment='center', verticalalignment='center')
|
||||
for d, color in zip(case_data, colors):
|
||||
ax.plot(theta, d, color=color)
|
||||
ax.fill(theta, d, facecolor=color, alpha=0.25)
|
||||
ax.set_varlabels(spoke_labels)
|
||||
|
||||
# add legend relative to top-left plot
|
||||
ax = axes[0, 0]
|
||||
labels = ('Factor 1', 'Factor 2', 'Factor 3', 'Factor 4', 'Factor 5')
|
||||
legend = ax.legend(labels, loc=(0.9, .95),
|
||||
labelspacing=0.1, fontsize='small')
|
||||
|
||||
fig.text(0.5, 0.965, '5-Factor Solution Profiles Across Four Scenarios',
|
||||
horizontalalignment='center', color='black', weight='bold',
|
||||
size='large')
|
||||
return fig
|
||||
|
||||
def DifferentScales():
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# Create some mock data
|
||||
t = np.arange(0.01, 10.0, 0.01)
|
||||
data1 = np.exp(t)
|
||||
data2 = np.sin(2 * np.pi * t)
|
||||
|
||||
fig, ax1 = plt.subplots()
|
||||
|
||||
color = 'tab:red'
|
||||
ax1.set_xlabel('time (s)')
|
||||
ax1.set_ylabel('exp', color=color)
|
||||
ax1.plot(t, data1, color=color)
|
||||
ax1.tick_params(axis='y', labelcolor=color)
|
||||
|
||||
ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis
|
||||
|
||||
color = 'tab:blue'
|
||||
ax2.set_ylabel('sin', color=color) # we already handled the x-label with ax1
|
||||
ax2.plot(t, data2, color=color)
|
||||
ax2.tick_params(axis='y', labelcolor=color)
|
||||
|
||||
fig.tight_layout() # otherwise the right y-label is slightly clipped
|
||||
return fig
|
||||
|
||||
def ExploringNormalizations():
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.colors as mcolors
|
||||
import numpy as np
|
||||
from numpy.random import multivariate_normal
|
||||
|
||||
data = np.vstack([
|
||||
multivariate_normal([10, 10], [[3, 2], [2, 3]], size=100000),
|
||||
multivariate_normal([30, 20], [[2, 3], [1, 3]], size=1000)
|
||||
])
|
||||
|
||||
gammas = [0.8, 0.5, 0.3]
|
||||
|
||||
fig, axes = plt.subplots(nrows=2, ncols=2)
|
||||
|
||||
axes[0, 0].set_title('Linear normalization')
|
||||
axes[0, 0].hist2d(data[:, 0], data[:, 1], bins=100)
|
||||
|
||||
for ax, gamma in zip(axes.flat[1:], gammas):
|
||||
ax.set_title(r'Power law $(\gamma=%1.1f)$' % gamma)
|
||||
ax.hist2d(data[:, 0], data[:, 1],
|
||||
bins=100, norm=mcolors.PowerNorm(gamma))
|
||||
|
||||
fig.tight_layout()
|
||||
return fig
|
||||
|
||||
def PyplotFormatstr():
|
||||
|
||||
def f(t):
|
||||
|
@ -195,6 +496,7 @@ def AxesGrid():
|
|||
plt.draw()
|
||||
return plt.gcf()
|
||||
|
||||
# The magic function that makes it possible.... glues together tkinter and pyplot using Canvas Widget
|
||||
def draw_figure(canvas, figure, loc=(0, 0)):
|
||||
""" Draw a matplotlib figure onto a Tk canvas
|
||||
|
||||
|
@ -218,8 +520,6 @@ def draw_figure(canvas, figure, loc=(0, 0)):
|
|||
# which must be kept live or else the picture disappears
|
||||
return photo
|
||||
|
||||
#------------------------------- PASTE YOUR MATPLOTLIB CODE HERE -------------------------------
|
||||
|
||||
|
||||
# -------------------------------- GUI Starts Here -------------------------------#
|
||||
# fig = your figure you want to display. Assumption is that 'fig' holds the #
|
||||
|
@ -227,35 +527,41 @@ def draw_figure(canvas, figure, loc=(0, 0)):
|
|||
# --------------------------------------------------------------------------------#
|
||||
|
||||
fig_dict = {'Pyplot Simple':PyplotSimple, 'Pyplot Formatstr':PyplotFormatstr,'PyPlot Three':Subplot3d,
|
||||
'Unicode Minus': UnicodeMinus, 'Pyplot Scales' : PyplotScales, 'Axes Grid' : AxesGrid}
|
||||
'Unicode Minus': UnicodeMinus, 'Pyplot Scales' : PyplotScales, 'Axes Grid' : AxesGrid,
|
||||
'Exploring Normalizations' : ExploringNormalizations, 'Different Scales' : DifferentScales,
|
||||
'Pyplot Box Plot' : PyplotBoxPlot, 'Pyplot ggplot Style Sheet' : PyplotGGPlotSytleSheet}
|
||||
|
||||
figure_w, figure_h = 640,480
|
||||
canvas_elem = g.Canvas(size=(figure_w, figure_h)) # get the canvas we'll be drawing on
|
||||
# define the form layout
|
||||
listbox_values = [key for key in fig_dict.keys()]
|
||||
col_listbox = [[g.Listbox(values=listbox_values,size=(20,8), key='func')],
|
||||
[g.ReadFormButton('Plot', pad=((50,0), 3))]]
|
||||
col_listbox = [[g.Listbox(values=listbox_values,size=(25,len(listbox_values)), key='func')],
|
||||
[g.T(' '), g.ReadFormButton('Plot', size=(5,2)), g.Exit(size=(5,2))]]
|
||||
|
||||
layout = [[g.Text('Matplotlib Plot Test', font=('current 18'))],
|
||||
[g.Column(col_listbox), canvas_elem],
|
||||
[g.Exit(pad=((50,0), 3), size=(4,2))]]
|
||||
[g.Column(col_listbox), canvas_elem]]
|
||||
|
||||
# create the form and show it without the plot
|
||||
form = g.FlexForm('Demo Application - Embedding Matplotlib In PySimpleGUI')
|
||||
form.Layout(layout)
|
||||
form.Show(non_blocking=True)
|
||||
form.NonBlocking = False
|
||||
|
||||
# add the plot to the window
|
||||
while True:
|
||||
button, values = form.Read()
|
||||
# show it all again and get buttons
|
||||
if button is None or button is 'Exit':
|
||||
break
|
||||
if button is 'Clear':
|
||||
canvas_elem.TKCanvas.delete(Tk.ALL)
|
||||
continue
|
||||
|
||||
choice = values['func'][0]
|
||||
try:
|
||||
func = fig_dict[choice]
|
||||
except:
|
||||
func = fig_dict['Pyplot Simple']
|
||||
|
||||
plt.clf()
|
||||
fig = func()
|
||||
fig_photo = draw_figure(canvas_elem.TKCanvas, fig)
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue