231 lines
6.6 KiB
Python
231 lines
6.6 KiB
Python
|
import PySimpleGUI as sg
|
||
|
|
||
|
import numpy as np
|
||
|
from matplotlib.backends.backend_tkagg import FigureCanvasAgg
|
||
|
import matplotlib.figure
|
||
|
import matplotlib.pyplot as plt
|
||
|
import io
|
||
|
|
||
|
from matplotlib import cm
|
||
|
from mpl_toolkits.mplot3d.axes3d import get_test_data
|
||
|
from matplotlib.ticker import NullFormatter # useful for `logit` scale
|
||
|
|
||
|
"""
|
||
|
Demo - Matplotlib Non-interactive Embedded with Theme and Style selection
|
||
|
|
||
|
This demo is based on the Matplotlib "TEMPLATE" demo that is a general purpose, display-only
|
||
|
demo as only the image of the plot is shown. None of the buttons and interactive parts
|
||
|
of the MAtplotlib interface are included.
|
||
|
|
||
|
This demo adds the ability to change the Window's "Theme" and the Matplotlib's "Style".
|
||
|
It gives you a way to quickly see how well a theme is going to match a particular Matplotlib Style.
|
||
|
|
||
|
Copyright 2020 PySimpleGUI.org
|
||
|
"""
|
||
|
|
||
|
|
||
|
def create_axis_grid():
|
||
|
from mpl_toolkits.axes_grid1.axes_rgb import RGBAxes
|
||
|
|
||
|
plt.close('all')
|
||
|
|
||
|
def get_demo_image():
|
||
|
# prepare image
|
||
|
delta = 0.5
|
||
|
|
||
|
extent = (-3, 4, -4, 3)
|
||
|
x = np.arange(-3.0, 4.001, delta)
|
||
|
y = np.arange(-4.0, 3.001, delta)
|
||
|
X, Y = np.meshgrid(x, y)
|
||
|
Z1 = np.exp(-X ** 2 - Y ** 2)
|
||
|
Z2 = np.exp(-(X - 1) ** 2 - (Y - 1) ** 2)
|
||
|
Z = (Z1 - Z2) * 2
|
||
|
|
||
|
return Z, extent
|
||
|
|
||
|
def get_rgb():
|
||
|
Z, extent = get_demo_image()
|
||
|
|
||
|
Z[Z < 0] = 0.
|
||
|
Z = Z / Z.max()
|
||
|
|
||
|
R = Z[:13, :13]
|
||
|
G = Z[2:, 2:]
|
||
|
B = Z[:13, 2:]
|
||
|
|
||
|
return R, G, B
|
||
|
|
||
|
fig = plt.figure(1)
|
||
|
ax = RGBAxes(fig, [0.1, 0.1, 0.8, 0.8])
|
||
|
|
||
|
r, g, b = get_rgb()
|
||
|
kwargs = dict(origin="lower", interpolation="nearest")
|
||
|
ax.imshow_rgb(r, g, b, **kwargs)
|
||
|
|
||
|
ax.RGB.set_xlim(0., 9.5)
|
||
|
ax.RGB.set_ylim(0.9, 10.6)
|
||
|
|
||
|
plt.draw()
|
||
|
return plt.gcf()
|
||
|
|
||
|
|
||
|
def create_figure():
|
||
|
# ------------------------------- START OF YOUR MATPLOTLIB CODE -------------------------------
|
||
|
fig = matplotlib.figure.Figure(figsize=(5, 4), dpi=100)
|
||
|
t = np.arange(0, 3, .01)
|
||
|
fig.add_subplot(111).plot(t, 2 * np.sin(2 * np.pi * t))
|
||
|
|
||
|
return fig
|
||
|
|
||
|
|
||
|
def create_subplot_3d():
|
||
|
fig = plt.figure()
|
||
|
|
||
|
ax = fig.add_subplot(1, 2, 1, projection='3d')
|
||
|
X = np.arange(-5, 5, 0.25)
|
||
|
Y = np.arange(-5, 5, 0.25)
|
||
|
X, Y = np.meshgrid(X, Y)
|
||
|
R = np.sqrt(X ** 2 + Y ** 2)
|
||
|
Z = np.sin(R)
|
||
|
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.jet,
|
||
|
linewidth=0, antialiased=False)
|
||
|
ax.set_zlim3d(-1.01, 1.01)
|
||
|
|
||
|
fig.colorbar(surf, shrink=0.5, aspect=5)
|
||
|
|
||
|
ax = fig.add_subplot(1, 2, 2, projection='3d')
|
||
|
X, Y, Z = get_test_data(0.05)
|
||
|
ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)
|
||
|
return fig
|
||
|
|
||
|
|
||
|
def create_pyplot_scales():
|
||
|
plt.close('all')
|
||
|
# Fixing random state for reproducibility
|
||
|
np.random.seed(19680801)
|
||
|
|
||
|
# make up some data in the interval ]0, 1[
|
||
|
y = np.random.normal(loc=0.5, scale=0.4, size=1000)
|
||
|
y = y[(y > 0) & (y < 1)]
|
||
|
y.sort()
|
||
|
x = np.arange(len(y))
|
||
|
|
||
|
# plot with various axes scales
|
||
|
plt.figure(1)
|
||
|
|
||
|
# linear
|
||
|
plt.subplot(221)
|
||
|
plt.plot(x, y)
|
||
|
plt.yscale('linear')
|
||
|
plt.title('linear')
|
||
|
plt.grid(True)
|
||
|
|
||
|
# log
|
||
|
plt.subplot(222)
|
||
|
plt.plot(x, y)
|
||
|
plt.yscale('log')
|
||
|
plt.title('log')
|
||
|
plt.grid(True)
|
||
|
|
||
|
# symmetric log
|
||
|
plt.subplot(223)
|
||
|
plt.plot(x, y - y.mean())
|
||
|
plt.yscale('symlog', linthreshy=0.01)
|
||
|
plt.title('symlog')
|
||
|
plt.grid(True)
|
||
|
|
||
|
# logit
|
||
|
plt.subplot(224)
|
||
|
plt.plot(x, y)
|
||
|
plt.yscale('logit')
|
||
|
plt.title('logit')
|
||
|
plt.grid(True)
|
||
|
# Format the minor tick labels of the y-axis into empty strings with
|
||
|
# `NullFormatter`, to avoid cumbering the axis with too many labels.
|
||
|
plt.gca().yaxis.set_minor_formatter(NullFormatter())
|
||
|
# Adjust the subplot layout, because the logit one may take more space
|
||
|
# than usual, due to y-tick labels like "1 - 10^{-3}"
|
||
|
plt.subplots_adjust(top=0.92, bottom=0.08, left=0.10, right=0.95, hspace=0.25,
|
||
|
wspace=0.35)
|
||
|
return plt.gcf()
|
||
|
|
||
|
|
||
|
# ----------------------------- The draw figure helpful function -----------------------------
|
||
|
|
||
|
def draw_figure(element, figure):
|
||
|
"""
|
||
|
Draws the previously created "figure" in the supplied Image Element
|
||
|
|
||
|
:param element: an Image Element
|
||
|
:param figure: a Matplotlib figure
|
||
|
:return: The figure canvas
|
||
|
"""
|
||
|
|
||
|
plt.close('all') # erases previously drawn plots
|
||
|
canv = FigureCanvasAgg(figure)
|
||
|
buf = io.BytesIO()
|
||
|
canv.print_figure(buf, format='png')
|
||
|
if buf is None:
|
||
|
return None
|
||
|
buf.seek(0)
|
||
|
element.update(data=buf.read())
|
||
|
return canv
|
||
|
|
||
|
|
||
|
dictionary_of_figures = {'Axis Grid': create_axis_grid,
|
||
|
'Subplot 3D': create_subplot_3d,
|
||
|
'Scales': create_pyplot_scales,
|
||
|
'Basic Figure': create_figure}
|
||
|
|
||
|
|
||
|
# ----------------------------- The GUI Section -----------------------------
|
||
|
def create_window():
|
||
|
"""
|
||
|
Defines the window's layout and creates the window object.
|
||
|
This function is used so that the window's theme can be changed and the window "re-started".
|
||
|
|
||
|
:return: The Window object
|
||
|
:rtype: sg.Window
|
||
|
"""
|
||
|
|
||
|
left_col = [[sg.T('Figures to Draw')],
|
||
|
[sg.Listbox(list(dictionary_of_figures), default_values=[list(dictionary_of_figures)[0]], size=(15, 5), key='-LB-')],
|
||
|
[sg.T('Matplotlib Styles')],
|
||
|
[sg.Combo(plt.style.available, size=(15, 10), key='-STYLE-')],
|
||
|
[sg.T('PySimpleGUI Themes')],
|
||
|
[sg.Combo(sg.theme_list(), default_value=sg.theme(), size=(15, 10), key='-THEME-')]]
|
||
|
|
||
|
layout = [[sg.T('Matplotlib Example', font='Any 20')],
|
||
|
[sg.Col(left_col), sg.Image(key='-IMAGE-')],
|
||
|
[sg.B('Draw'), sg.B('Exit')]]
|
||
|
|
||
|
window = sg.Window('Matplotlib Embedded Template', layout, finalize=True)
|
||
|
|
||
|
return window
|
||
|
|
||
|
|
||
|
def main():
|
||
|
window = create_window()
|
||
|
|
||
|
while True:
|
||
|
event, values = window.read()
|
||
|
print(event, values)
|
||
|
if event == 'Exit' or event == sg.WIN_CLOSED:
|
||
|
break
|
||
|
if event == 'Draw':
|
||
|
if values['-THEME-'] != sg.theme(): # if new theme chosen, create a new window
|
||
|
window.close()
|
||
|
sg.theme(values['-THEME-'])
|
||
|
window = create_window()
|
||
|
if values['-LB-']: # make sure something selected to draw
|
||
|
func = dictionary_of_figures[values['-LB-'][0]]
|
||
|
if values['-STYLE-']:
|
||
|
plt.style.use(values['-STYLE-'])
|
||
|
draw_figure(window['-IMAGE-'], func())
|
||
|
|
||
|
window.close()
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|