267 lines
7.6 KiB
Python
267 lines
7.6 KiB
Python
|
import PySimpleGUI as g
|
||
|
import matplotlib
|
||
|
matplotlib.use('TkAgg')
|
||
|
from matplotlib.backends.backend_tkagg import FigureCanvasAgg
|
||
|
import matplotlib.backends.tkagg as tkagg
|
||
|
import tkinter as Tk
|
||
|
|
||
|
"""
|
||
|
Demonstrates one way of embedding Matplotlib figures into a PySimpleGUI window.
|
||
|
|
||
|
Basic steps are:
|
||
|
* Create a Canvas Element
|
||
|
* Layout form
|
||
|
* Display form (NON BLOCKING)
|
||
|
* Draw plots onto convas
|
||
|
* Display form (BLOCKING)
|
||
|
"""
|
||
|
|
||
|
|
||
|
|
||
|
import numpy as np
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
|
||
|
def PyplotSimple():
|
||
|
import numpy as np
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
# evenly sampled time at 200ms intervals
|
||
|
t = np.arange(0., 5., 0.2)
|
||
|
|
||
|
# red dashes, blue squares and green triangles
|
||
|
plt.plot(t, t, 'r--', t, t ** 2, 'bs', t, t ** 3, 'g^')
|
||
|
|
||
|
fig = plt.gcf() # get the figure to show
|
||
|
return fig
|
||
|
|
||
|
def PyplotFormatstr():
|
||
|
|
||
|
def f(t):
|
||
|
return np.exp(-t) * np.cos(2*np.pi*t)
|
||
|
|
||
|
t1 = np.arange(0.0, 5.0, 0.1)
|
||
|
t2 = np.arange(0.0, 5.0, 0.02)
|
||
|
|
||
|
plt.figure(1)
|
||
|
plt.subplot(211)
|
||
|
plt.plot(t1, f(t1), 'bo', t2, f(t2), 'k')
|
||
|
|
||
|
plt.subplot(212)
|
||
|
plt.plot(t2, np.cos(2*np.pi*t2), 'r--')
|
||
|
fig = plt.gcf() # get the figure to show
|
||
|
return fig
|
||
|
|
||
|
def UnicodeMinus():
|
||
|
import numpy as np
|
||
|
import matplotlib
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
# Fixing random state for reproducibility
|
||
|
np.random.seed(19680801)
|
||
|
|
||
|
matplotlib.rcParams['axes.unicode_minus'] = False
|
||
|
fig, ax = plt.subplots()
|
||
|
ax.plot(10 * np.random.randn(100), 10 * np.random.randn(100), 'o')
|
||
|
ax.set_title('Using hyphen instead of Unicode minus')
|
||
|
return fig
|
||
|
|
||
|
def Subplot3d():
|
||
|
from mpl_toolkits.mplot3d.axes3d import Axes3D
|
||
|
from matplotlib import cm
|
||
|
# from matplotlib.ticker import LinearLocator, FixedLocator, FormatStrFormatter
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
|
||
|
fig = plt.figure()
|
||
|
|
||
|
ax = fig.add_subplot(1, 2, 1, projection='3d')
|
||
|
X = np.arange(-5, 5, 0.25)
|
||
|
Y = np.arange(-5, 5, 0.25)
|
||
|
X, Y = np.meshgrid(X, Y)
|
||
|
R = np.sqrt(X ** 2 + Y ** 2)
|
||
|
Z = np.sin(R)
|
||
|
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.jet,
|
||
|
linewidth=0, antialiased=False)
|
||
|
ax.set_zlim3d(-1.01, 1.01)
|
||
|
|
||
|
# ax.w_zaxis.set_major_locator(LinearLocator(10))
|
||
|
# ax.w_zaxis.set_major_formatter(FormatStrFormatter('%.03f'))
|
||
|
|
||
|
fig.colorbar(surf, shrink=0.5, aspect=5)
|
||
|
|
||
|
from mpl_toolkits.mplot3d.axes3d import get_test_data
|
||
|
ax = fig.add_subplot(1, 2, 2, projection='3d')
|
||
|
X, Y, Z = get_test_data(0.05)
|
||
|
ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)
|
||
|
return fig
|
||
|
|
||
|
def PyplotScales():
|
||
|
import numpy as np
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
from matplotlib.ticker import NullFormatter # useful for `logit` scale
|
||
|
|
||
|
# Fixing random state for reproducibility
|
||
|
np.random.seed(19680801)
|
||
|
|
||
|
# make up some data in the interval ]0, 1[
|
||
|
y = np.random.normal(loc=0.5, scale=0.4, size=1000)
|
||
|
y = y[(y > 0) & (y < 1)]
|
||
|
y.sort()
|
||
|
x = np.arange(len(y))
|
||
|
|
||
|
# plot with various axes scales
|
||
|
plt.figure(1)
|
||
|
|
||
|
# linear
|
||
|
plt.subplot(221)
|
||
|
plt.plot(x, y)
|
||
|
plt.yscale('linear')
|
||
|
plt.title('linear')
|
||
|
plt.grid(True)
|
||
|
|
||
|
# log
|
||
|
plt.subplot(222)
|
||
|
plt.plot(x, y)
|
||
|
plt.yscale('log')
|
||
|
plt.title('log')
|
||
|
plt.grid(True)
|
||
|
|
||
|
# symmetric log
|
||
|
plt.subplot(223)
|
||
|
plt.plot(x, y - y.mean())
|
||
|
plt.yscale('symlog', linthreshy=0.01)
|
||
|
plt.title('symlog')
|
||
|
plt.grid(True)
|
||
|
|
||
|
# logit
|
||
|
plt.subplot(224)
|
||
|
plt.plot(x, y)
|
||
|
plt.yscale('logit')
|
||
|
plt.title('logit')
|
||
|
plt.grid(True)
|
||
|
# Format the minor tick labels of the y-axis into empty strings with
|
||
|
# `NullFormatter`, to avoid cumbering the axis with too many labels.
|
||
|
plt.gca().yaxis.set_minor_formatter(NullFormatter())
|
||
|
# Adjust the subplot layout, because the logit one may take more space
|
||
|
# than usual, due to y-tick labels like "1 - 10^{-3}"
|
||
|
plt.subplots_adjust(top=0.92, bottom=0.08, left=0.10, right=0.95, hspace=0.25,
|
||
|
wspace=0.35)
|
||
|
return plt.gcf()
|
||
|
|
||
|
|
||
|
def AxesGrid():
|
||
|
import numpy as np
|
||
|
import matplotlib.pyplot as plt
|
||
|
from mpl_toolkits.axes_grid1.axes_rgb import RGBAxes
|
||
|
|
||
|
def get_demo_image():
|
||
|
# prepare image
|
||
|
delta = 0.5
|
||
|
|
||
|
extent = (-3, 4, -4, 3)
|
||
|
x = np.arange(-3.0, 4.001, delta)
|
||
|
y = np.arange(-4.0, 3.001, delta)
|
||
|
X, Y = np.meshgrid(x, y)
|
||
|
Z1 = np.exp(-X ** 2 - Y ** 2)
|
||
|
Z2 = np.exp(-(X - 1) ** 2 - (Y - 1) ** 2)
|
||
|
Z = (Z1 - Z2) * 2
|
||
|
|
||
|
return Z, extent
|
||
|
|
||
|
def get_rgb():
|
||
|
Z, extent = get_demo_image()
|
||
|
|
||
|
Z[Z < 0] = 0.
|
||
|
Z = Z / Z.max()
|
||
|
|
||
|
R = Z[:13, :13]
|
||
|
G = Z[2:, 2:]
|
||
|
B = Z[:13, 2:]
|
||
|
|
||
|
return R, G, B
|
||
|
|
||
|
fig = plt.figure(1)
|
||
|
ax = RGBAxes(fig, [0.1, 0.1, 0.8, 0.8])
|
||
|
|
||
|
r, g, b = get_rgb()
|
||
|
kwargs = dict(origin="lower", interpolation="nearest")
|
||
|
ax.imshow_rgb(r, g, b, **kwargs)
|
||
|
|
||
|
ax.RGB.set_xlim(0., 9.5)
|
||
|
ax.RGB.set_ylim(0.9, 10.6)
|
||
|
|
||
|
plt.draw()
|
||
|
return plt.gcf()
|
||
|
|
||
|
def draw_figure(canvas, figure, loc=(0, 0)):
|
||
|
""" Draw a matplotlib figure onto a Tk canvas
|
||
|
|
||
|
loc: location of top-left corner of figure on canvas in pixels.
|
||
|
|
||
|
Inspired by matplotlib source: lib/matplotlib/backends/backend_tkagg.py
|
||
|
"""
|
||
|
figure_canvas_agg = FigureCanvasAgg(figure)
|
||
|
figure_canvas_agg.draw()
|
||
|
figure_x, figure_y, figure_w, figure_h = figure.bbox.bounds
|
||
|
figure_w, figure_h = int(figure_w), int(figure_h)
|
||
|
photo = Tk.PhotoImage(master=canvas, width=figure_w, height=figure_h)
|
||
|
|
||
|
# Position: convert from top-left anchor to center anchor
|
||
|
canvas.create_image(loc[0] + figure_w/2, loc[1] + figure_h/2, image=photo)
|
||
|
|
||
|
# Unfortunately, there's no accessor for the pointer to the native renderer
|
||
|
tkagg.blit(photo, figure_canvas_agg.get_renderer()._renderer, colormode=2)
|
||
|
|
||
|
# Return a handle which contains a reference to the photo object
|
||
|
# which must be kept live or else the picture disappears
|
||
|
return photo
|
||
|
|
||
|
#------------------------------- PASTE YOUR MATPLOTLIB CODE HERE -------------------------------
|
||
|
|
||
|
|
||
|
# -------------------------------- GUI Starts Here -------------------------------#
|
||
|
# fig = your figure you want to display. Assumption is that 'fig' holds the #
|
||
|
# information to display. #
|
||
|
# --------------------------------------------------------------------------------#
|
||
|
|
||
|
fig_dict = {'Pyplot Simple':PyplotSimple, 'Pyplot Formatstr':PyplotFormatstr,'PyPlot Three':Subplot3d,
|
||
|
'Unicode Minus': UnicodeMinus, 'Pyplot Scales' : PyplotScales, 'Axes Grid' : AxesGrid}
|
||
|
|
||
|
figure_w, figure_h = 640,480
|
||
|
canvas_elem = g.Canvas(size=(figure_w, figure_h)) # get the canvas we'll be drawing on
|
||
|
# define the form layout
|
||
|
listbox_values = [key for key in fig_dict.keys()]
|
||
|
col_listbox = [[g.Listbox(values=listbox_values,size=(20,8), key='func')],
|
||
|
[g.ReadFormButton('Plot', pad=((50,0), 3))]]
|
||
|
|
||
|
layout = [[g.Text('Matplotlib Plot Test', font=('current 18'))],
|
||
|
[g.Column(col_listbox), canvas_elem],
|
||
|
[g.Exit(pad=((50,0), 3), size=(4,2))]]
|
||
|
|
||
|
# create the form and show it without the plot
|
||
|
form = g.FlexForm('Demo Application - Embedding Matplotlib In PySimpleGUI')
|
||
|
form.Layout(layout)
|
||
|
form.Show(non_blocking=True)
|
||
|
form.NonBlocking = False
|
||
|
|
||
|
# add the plot to the window
|
||
|
func = fig_dict['Pyplot Simple']
|
||
|
while True:
|
||
|
fig = func()
|
||
|
fig_photo = draw_figure(canvas_elem.TKCanvas, fig)
|
||
|
|
||
|
# show it all again and get buttons
|
||
|
button, values = form.Read()
|
||
|
if button is None or button is 'Exit':
|
||
|
break
|
||
|
|
||
|
choice = values['func'][0]
|
||
|
|
||
|
try:
|
||
|
func = fig_dict[choice]
|
||
|
except:
|
||
|
func = fig_dict['Pyplot Simple']
|
||
|
|