2021-06-30 14:58:12 +00:00
|
|
|
import PySimpleGUI as sg
|
|
|
|
import numpy as np
|
|
|
|
from matplotlib.backends.backend_tkagg import FigureCanvasAgg
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import io
|
|
|
|
import time
|
|
|
|
|
|
|
|
"""
|
|
|
|
Demo_Matplotlib_Image_Elem_Spetrogram_Animated_Threaded Demo
|
|
|
|
|
|
|
|
Demo to show
|
|
|
|
* How to use an Image element to show a Matplotlib figure
|
|
|
|
* How to draw a Spectrogram
|
|
|
|
* How to animate the drawing by simply erasing and drawing the entire figure
|
|
|
|
* How to communicate between a thread and the GUI
|
|
|
|
|
|
|
|
The point here is to keep things simple to enable you to get started.
|
|
|
|
|
|
|
|
NOTE:
|
|
|
|
This threaded technique with matplotlib hasn't been thoroughly tested.
|
|
|
|
There may be resource leaks for example. Have run for several hundred seconds
|
|
|
|
without problems so it's perhaps safe as written.
|
|
|
|
|
|
|
|
The example static graph can be found in the matplotlib gallery:
|
|
|
|
https://matplotlib.org/stable/gallery/images_contours_and_fields/specgram_demo.html
|
|
|
|
|
2022-03-28 22:27:50 +00:00
|
|
|
Copyright 2021, 2022 PySimpleGUI
|
2021-06-30 14:58:12 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
np.random.seed(19801)
|
|
|
|
|
|
|
|
|
|
|
|
# .d88888b dP dP
|
|
|
|
# 88. "' 88 88
|
|
|
|
# `Y88888b. d8888P .d8888b. 88d888b. d8888P
|
|
|
|
# `8b 88 88' `88 88' `88 88
|
|
|
|
# d8' .8P 88 88. .88 88 88
|
|
|
|
# Y88888P dP `88888P8 dP dP
|
|
|
|
# oooooooooooooooooooooooooooooooooooooooooo of your Matplotlib code
|
|
|
|
|
|
|
|
|
|
|
|
def the_thread(window: sg.Window):
|
|
|
|
"""
|
|
|
|
The thread that communicates with the application through the window's events.
|
|
|
|
|
|
|
|
Because the figure creation time is greater than the GUI drawing time, it's safe
|
|
|
|
to send a non-regulated stream of events without fear of overrunning the communication queue
|
|
|
|
"""
|
|
|
|
while True:
|
|
|
|
fig = your_matplotlib_code()
|
|
|
|
buf = draw_figure(fig)
|
|
|
|
window.write_event_value('-THREAD-', buf) # Data sent is a tuple of thread name and counter
|
|
|
|
|
|
|
|
|
|
|
|
def your_matplotlib_code():
|
|
|
|
# The animated part of this is the t_lower, t_upper terms as well as the entire dataset that's graphed.
|
|
|
|
# An entirely new graph is created from scratch every time... implying here that optimization is possible.
|
|
|
|
if not hasattr(your_matplotlib_code, 't_lower'):
|
|
|
|
your_matplotlib_code.t_lower = 10
|
|
|
|
your_matplotlib_code.t_upper = 12
|
|
|
|
else:
|
|
|
|
your_matplotlib_code.t_lower = (your_matplotlib_code.t_lower + .5) % 18
|
|
|
|
your_matplotlib_code.t_upper = (your_matplotlib_code.t_upper + .5) % 18
|
|
|
|
|
|
|
|
dt = 0.0005
|
|
|
|
t = np.arange(0.0, 20.0, dt)
|
|
|
|
s1 = np.sin(2 * np.pi * 100 * t)
|
|
|
|
s2 = 2 * np.sin(2 * np.pi * 400 * t)
|
|
|
|
|
|
|
|
# create a transient "chirp"
|
|
|
|
# s2[t <= 5] = s2[15 <= t] = 0 # original line of code (not animated)
|
|
|
|
# If running the animation, use the t_lower and t_upper values
|
|
|
|
s2[t <= your_matplotlib_code.t_lower] = s2[your_matplotlib_code.t_upper <= t] = 0
|
|
|
|
|
|
|
|
# add some noise into the mix
|
|
|
|
nse = 0.01 * np.random.random(size=len(t))
|
|
|
|
|
|
|
|
x = s1 + s2 + nse # the signal
|
|
|
|
NFFT = 1024 # the length of the windowing segments
|
|
|
|
Fs = int(1.0 / dt) # the sampling frequency
|
|
|
|
|
|
|
|
fig, (ax2) = plt.subplots(nrows=1)
|
|
|
|
# ax1.plot(t, x)
|
|
|
|
Pxx, freqs, bins, im = ax2.specgram(x, NFFT=NFFT, Fs=Fs, noverlap=900)
|
|
|
|
|
|
|
|
return fig
|
|
|
|
|
|
|
|
|
|
|
|
# 88888888b dP
|
|
|
|
# 88 88
|
|
|
|
# 88aaaa 88d888b. .d888b88
|
|
|
|
# 88 88' `88 88' `88
|
|
|
|
# 88 88 88 88. .88
|
|
|
|
# 88888888P dP dP `88888P8
|
|
|
|
# ooooooooooooooooooooooooooooo of your Matplotlib code
|
|
|
|
|
|
|
|
|
|
|
|
# ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
|
|
|
|
|
|
|
|
|
|
|
|
# dP dP dP
|
|
|
|
# 88 88 88
|
|
|
|
# 88aaaaa88a .d8888b. 88 88d888b. .d8888b. 88d888b.
|
|
|
|
# 88 88 88ooood8 88 88' `88 88ooood8 88' `88
|
|
|
|
# 88 88 88. ... 88 88. .88 88. ... 88
|
|
|
|
# dP dP `88888P' dP 88Y888P' `88888P' dP
|
|
|
|
# ooooooooooooooooooooooo~88~oooooooooooooooooooooooo function starts here
|
|
|
|
# dP
|
|
|
|
|
|
|
|
def draw_figure(figure):
|
|
|
|
"""
|
|
|
|
Draws the previously created "figure" in the supplied Image Element
|
|
|
|
|
|
|
|
:param figure: a Matplotlib figure
|
|
|
|
:return: BytesIO object
|
|
|
|
"""
|
|
|
|
|
|
|
|
plt.close('all') # erases previously drawn plots
|
|
|
|
canv = FigureCanvasAgg(figure)
|
|
|
|
buf = io.BytesIO()
|
|
|
|
canv.print_figure(buf, format='png')
|
|
|
|
if buf is not None:
|
|
|
|
buf.seek(0)
|
|
|
|
# element.update(data=buf.read())
|
|
|
|
return buf
|
|
|
|
else:
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
# .88888. dP dP dP
|
|
|
|
# d8' `88 88 88 88
|
|
|
|
# 88 88 88 88
|
|
|
|
# 88 YP88 88 88 88
|
|
|
|
# Y8. .88 Y8. .8P 88
|
|
|
|
# `88888' `Y88888P' dP
|
|
|
|
# ooooooooooooooooooooooo
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
# define the window layout
|
|
|
|
layout = [[sg.Text('Spectrogram Animated - Threaded', font='Helvetica 24')],
|
|
|
|
[sg.pin(sg.Image(key='-IMAGE-'))],
|
2022-03-28 22:27:50 +00:00
|
|
|
[sg.T(k='-STATS-')],
|
2021-06-30 14:58:12 +00:00
|
|
|
[sg.B('Animate', focus=True, k='-ANIMATE-')]]
|
|
|
|
|
|
|
|
# create the form and show it without the plot
|
|
|
|
window = sg.Window('Animated Spectrogram', layout, element_justification='c', font='Helvetica 14')
|
|
|
|
|
|
|
|
counter = start_time = delta = 0
|
|
|
|
while True:
|
|
|
|
event, values = window.read()
|
|
|
|
if event == sg.WIN_CLOSED:
|
|
|
|
break
|
|
|
|
sg.timer_start()
|
|
|
|
if event == '-ANIMATE-':
|
|
|
|
window['-IMAGE-'].update(visible=True)
|
|
|
|
start_time = time.time()
|
2022-03-28 22:27:50 +00:00
|
|
|
window.start_thread(lambda: the_thread(window), '-THEAD FINISHED-')
|
2021-06-30 14:58:12 +00:00
|
|
|
elif event == '-THREAD-':
|
|
|
|
plt.close('all') # close all plots... unclear if this is required
|
|
|
|
window['-IMAGE-'].update(data=values[event].read())
|
|
|
|
counter += 1
|
|
|
|
seconds_elapsed = int(time.time() - start_time)
|
|
|
|
fps = counter / seconds_elapsed if seconds_elapsed != 0 else 1.0
|
|
|
|
window['-STATS-'].update(f'Frame {counter} Write Time {delta} FPS = {fps:2.2} seconds = {seconds_elapsed}')
|
|
|
|
delta = sg.timer_stop()
|
|
|
|
|
|
|
|
window.close()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
2022-03-28 22:27:50 +00:00
|
|
|
# Newer versions of PySimpleGUI have an alias for this method that's called "start_thread" so that it's clearer what's happening
|
|
|
|
# In case you don't have that version installed this line of code creates the alias for you
|
|
|
|
sg.Window.start_thread = sg.Window.perform_long_operation
|
2021-06-30 14:58:12 +00:00
|
|
|
main()
|