PySimpleGUI/Demo_LED_Clock_Weather.py

177 lines
82 KiB
Python
Raw Normal View History

#!/usr/bin/env python
import sys
if sys.version_info[0] >= 3:
import PySimpleGUI as sg
else:
import PySimpleGUI27 as sg
sg.PopupError('This program uses Base64 images which are not supported in Python 2.7')
sys.exit()
import datetime
import calendar
import forecastio
##### CHANGE these settings to match your location... check Google Maps #####
MY_LOCATION_LAT = 35.000000
MY_LOCATION_LON = -79.000000
##### You need a free dark-sky key. You get 1000 calls a month for free #####
DARKSKY_KEY = "INSERT YOUR DARKSKY KEY HERE!" # *** INSERT YOUR DARKSKY KEY HERE **
NUM_COLS = 5 # Changes number of days in forecast
class GUI():
def __init__(self):
self.api_key = DARKSKY_KEY
self.lat = MY_LOCATION_LAT
self.lng = MY_LOCATION_LON
self.blink_count = 0
sg.SetOptions(border_width=0, text_color='white', background_color='black', text_element_background_color='black')
# Create clock layout
clock = [
[sg.T('', pad=((120,0),0)),
sg.Image(data=ledblank[22:], key='_hour1_'),
sg.Image(data=ledblank[22:], key='_hour2_'),
sg.Image(data=ledblank[22:], key='_colon_'),
sg.Image(data=ledblank[22:], key='_min1_'),
sg.Image(data=ledblank[22:], key='_min2_')], ]
# Create the weather columns layout
weather_cols = []
for i in range(NUM_COLS):
weather_cols.append(
[[sg.T('', size=(4, 1), font='Any 20', justification='center', key='_DAY_' + str(i)), ],
[sg.Image(data=w1[22:], background_color='black', key='_icon_'+str(i), pad=((4, 0), 3)), ],
[sg.T('--', size=(3, 1), justification='center', font='Any 20', key='_high_' + str(i), pad=((10, 0), 3))],
[sg.T('--', size=(3, 1), justification='center', font='Any 20', key='_low_' + str(i), pad=((10, 0), 3))]])
# Create the overall layout
layout = [[sg.Column(clock, background_color='black')],
[sg.Column(weather_cols[x], background_color='black') for x in range(NUM_COLS)],
[sg.RButton('Exit', button_color=('black', 'black'),
image_data=orangeround[22:], tooltip='close window', pad=((450,0),(10,0)))]]
# Create the window
self.window = sg.Window('My new window',
background_color='black',
grab_anywhere=True,
use_default_focus=False,
no_titlebar=True,
alpha_channel=.8, # set an alpha channel if want transparent
).Layout(layout).Finalize()
self.colon_elem = self.window.FindElement('_colon_')
self.hour1 = self.window.FindElement('_hour1_')
self.hour2 = self.window.FindElement('_hour2_')
self.min1 = self.window.FindElement('_min1_')
self.min2 = self.window.FindElement('_min2_')
def update_clock(self):
# update the clock
now = datetime.datetime.now()
real_hour = now.hour - 12 if now.hour > 12 else now.hour
hour1_digit = led_digits[real_hour // 10]
self.hour1.Update(data=hour1_digit[22:])
self.hour2.Update(data=led_digits[real_hour % 10][22:])
self.min2.Update(data=led_digits[int(now.minute) % 10][22:])
self.min1.Update(data=led_digits[int(now.minute) // 10][22:])
# Blink the :
if self.blink_count % 2:
self.colon_elem.Update(data=ledcolon[22:])
else:
self.colon_elem.Update(data=ledblank[22:])
self.blink_count += 1
def update_weather(self):
forecast = forecastio.load_forecast(self.api_key, self.lat, self.lng)
daily = forecast.daily()
today_weekday = datetime.datetime.today().weekday()
max_temps = []
min_temps = []
daily_icons = []
for daily_data in daily.data:
daily_icons.append(daily_data.d['icon'])
max_temps.append(int(daily_data.d['temperatureMax']))
min_temps.append(int(daily_data.d['temperatureMin']))
for i in range(NUM_COLS):
day_element = self.window.FindElement('_DAY_' + str(i))
max_element = self.window.FindElement('_high_' + str(i))
min_element = self.window.FindElement('_low_' + str(i))
icon_element = self.window.FindElement('_icon_' + str(i))
day_element.Update(calendar.day_abbr[(today_weekday + i) % 7])
max_element.Update(max_temps[i])
min_element.Update(min_temps[i])
icon_element.Update(data=weather_icon_dict[daily_icons[i]][22:])
def led_clock():
# Get the GUI object that is used to update the window
gui = GUI()
# ---------- EVENT LOOP ----------
last_update_time = 0
while True:
# Wake up once a second to update the clock and weather
event, values = gui.window.Read(timeout=1000)
if event in (None, 'Exit'):
break
# update clock
gui.update_clock()
# update weather once ever 6 hours
now = datetime.datetime.now()
if last_update_time == 0 or (now-last_update_time).seconds >= 60*60*6:
print('*** Updating Weather ***')
last_update_time = now
gui.update_weather()
led0 = ''
led1 = ''
led2 = ''
led3 = ''
led4 = ''
led5 = ''
led6 = ''
led7 = ''
led8 = ''
led9 = ''
ledcolon = ''
ledblank = '
w1 = '
w2 = '
w3 = '
w4 = '
w5 = '
orangeround = '
weather_icon_dict = {'clear-day': w1, 'clear-night': w1, 'rain': w3, 'snow': w3, 'sleet': w3, 'wind': w3, 'fog': w3,
'cloudy': w4, 'partly-cloudy-day': w5, 'partly-cloudy-night': w5}
led_digits = [led0, led1, led2, led3, led4, led5, led6, led7, led8, led9]
if __name__ == '__main__':
led_clock()